Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funcringcsetcALTV2lem4 Structured version   Visualization version   GIF version

Theorem funcringcsetcALTV2lem4 41343
Description: Lemma 4 for funcringcsetcALTV2 41349. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
funcringcsetcALTV2.r 𝑅 = (RingCat‘𝑈)
funcringcsetcALTV2.s 𝑆 = (SetCat‘𝑈)
funcringcsetcALTV2.b 𝐵 = (Base‘𝑅)
funcringcsetcALTV2.c 𝐶 = (Base‘𝑆)
funcringcsetcALTV2.u (𝜑𝑈 ∈ WUni)
funcringcsetcALTV2.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
funcringcsetcALTV2.g (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))))
Assertion
Ref Expression
funcringcsetcALTV2lem4 (𝜑𝐺 Fn (𝐵 × 𝐵))
Distinct variable groups:   𝑥,𝐵   𝜑,𝑥   𝑥,𝐶   𝑦,𝐵,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐶(𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem funcringcsetcALTV2lem4
StepHypRef Expression
1 eqid 2621 . . 3 (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))) = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))
2 ovex 6635 . . . 4 (𝑥 RingHom 𝑦) ∈ V
3 id 22 . . . . 5 ((𝑥 RingHom 𝑦) ∈ V → (𝑥 RingHom 𝑦) ∈ V)
43resiexd 6437 . . . 4 ((𝑥 RingHom 𝑦) ∈ V → ( I ↾ (𝑥 RingHom 𝑦)) ∈ V)
52, 4ax-mp 5 . . 3 ( I ↾ (𝑥 RingHom 𝑦)) ∈ V
61, 5fnmpt2i 7187 . 2 (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))) Fn (𝐵 × 𝐵)
7 funcringcsetcALTV2.g . . 3 (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))))
87fneq1d 5941 . 2 (𝜑 → (𝐺 Fn (𝐵 × 𝐵) ↔ (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))) Fn (𝐵 × 𝐵)))
96, 8mpbiri 248 1 (𝜑𝐺 Fn (𝐵 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987  Vcvv 3186  cmpt 4675   I cid 4986   × cxp 5074  cres 5078   Fn wfn 5844  cfv 5849  (class class class)co 6607  cmpt2 6609  WUnicwun 9469  Basecbs 15784  SetCatcsetc 16649   RingHom crh 18636  RingCatcringc 41307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-nul 3894  df-if 4061  df-sn 4151  df-pr 4153  df-op 4157  df-uni 4405  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-id 4991  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-1st 7116  df-2nd 7117
This theorem is referenced by:  funcringcsetcALTV2  41349
  Copyright terms: Public domain W3C validator