MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funopg Structured version   Visualization version   GIF version

Theorem funopg 5885
Description: A Kuratowski ordered pair is a function only if its components are equal. (Contributed by NM, 5-Jun-2008.) (Revised by Mario Carneiro, 26-Apr-2015.) (Avoid depending on this detail.)
Assertion
Ref Expression
funopg ((𝐴𝑉𝐵𝑊 ∧ Fun ⟨𝐴, 𝐵⟩) → 𝐴 = 𝐵)

Proof of Theorem funopg
Dummy variables 𝑢 𝑡 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 4375 . . . . 5 (𝑢 = 𝐴 → ⟨𝑢, 𝑡⟩ = ⟨𝐴, 𝑡⟩)
21funeqd 5874 . . . 4 (𝑢 = 𝐴 → (Fun ⟨𝑢, 𝑡⟩ ↔ Fun ⟨𝐴, 𝑡⟩))
3 eqeq1 2625 . . . 4 (𝑢 = 𝐴 → (𝑢 = 𝑡𝐴 = 𝑡))
42, 3imbi12d 334 . . 3 (𝑢 = 𝐴 → ((Fun ⟨𝑢, 𝑡⟩ → 𝑢 = 𝑡) ↔ (Fun ⟨𝐴, 𝑡⟩ → 𝐴 = 𝑡)))
5 opeq2 4376 . . . . 5 (𝑡 = 𝐵 → ⟨𝐴, 𝑡⟩ = ⟨𝐴, 𝐵⟩)
65funeqd 5874 . . . 4 (𝑡 = 𝐵 → (Fun ⟨𝐴, 𝑡⟩ ↔ Fun ⟨𝐴, 𝐵⟩))
7 eqeq2 2632 . . . 4 (𝑡 = 𝐵 → (𝐴 = 𝑡𝐴 = 𝐵))
86, 7imbi12d 334 . . 3 (𝑡 = 𝐵 → ((Fun ⟨𝐴, 𝑡⟩ → 𝐴 = 𝑡) ↔ (Fun ⟨𝐴, 𝐵⟩ → 𝐴 = 𝐵)))
9 funrel 5869 . . . . 5 (Fun ⟨𝑢, 𝑡⟩ → Rel ⟨𝑢, 𝑡⟩)
10 vex 3192 . . . . . 6 𝑢 ∈ V
11 vex 3192 . . . . . 6 𝑡 ∈ V
1210, 11relop 5237 . . . . 5 (Rel ⟨𝑢, 𝑡⟩ ↔ ∃𝑥𝑦(𝑢 = {𝑥} ∧ 𝑡 = {𝑥, 𝑦}))
139, 12sylib 208 . . . 4 (Fun ⟨𝑢, 𝑡⟩ → ∃𝑥𝑦(𝑢 = {𝑥} ∧ 𝑡 = {𝑥, 𝑦}))
1410, 11opth 4910 . . . . . . . 8 (⟨𝑢, 𝑡⟩ = ⟨{𝑥}, {𝑥, 𝑦}⟩ ↔ (𝑢 = {𝑥} ∧ 𝑡 = {𝑥, 𝑦}))
15 vex 3192 . . . . . . . . . . . 12 𝑥 ∈ V
1615opid 4394 . . . . . . . . . . 11 𝑥, 𝑥⟩ = {{𝑥}}
1716preq1i 4246 . . . . . . . . . 10 {⟨𝑥, 𝑥⟩, {{𝑥}, {𝑥, 𝑦}}} = {{{𝑥}}, {{𝑥}, {𝑥, 𝑦}}}
18 vex 3192 . . . . . . . . . . . 12 𝑦 ∈ V
1915, 18dfop 4374 . . . . . . . . . . 11 𝑥, 𝑦⟩ = {{𝑥}, {𝑥, 𝑦}}
2019preq2i 4247 . . . . . . . . . 10 {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩} = {⟨𝑥, 𝑥⟩, {{𝑥}, {𝑥, 𝑦}}}
21 snex 4874 . . . . . . . . . . 11 {𝑥} ∈ V
22 zfpair2 4873 . . . . . . . . . . 11 {𝑥, 𝑦} ∈ V
2321, 22dfop 4374 . . . . . . . . . 10 ⟨{𝑥}, {𝑥, 𝑦}⟩ = {{{𝑥}}, {{𝑥}, {𝑥, 𝑦}}}
2417, 20, 233eqtr4ri 2654 . . . . . . . . 9 ⟨{𝑥}, {𝑥, 𝑦}⟩ = {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩}
2524eqeq2i 2633 . . . . . . . 8 (⟨𝑢, 𝑡⟩ = ⟨{𝑥}, {𝑥, 𝑦}⟩ ↔ ⟨𝑢, 𝑡⟩ = {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩})
2614, 25bitr3i 266 . . . . . . 7 ((𝑢 = {𝑥} ∧ 𝑡 = {𝑥, 𝑦}) ↔ ⟨𝑢, 𝑡⟩ = {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩})
27 dffun4 5864 . . . . . . . . 9 (Fun ⟨𝑢, 𝑡⟩ ↔ (Rel ⟨𝑢, 𝑡⟩ ∧ ∀𝑧𝑤𝑣((⟨𝑧, 𝑤⟩ ∈ ⟨𝑢, 𝑡⟩ ∧ ⟨𝑧, 𝑣⟩ ∈ ⟨𝑢, 𝑡⟩) → 𝑤 = 𝑣)))
2827simprbi 480 . . . . . . . 8 (Fun ⟨𝑢, 𝑡⟩ → ∀𝑧𝑤𝑣((⟨𝑧, 𝑤⟩ ∈ ⟨𝑢, 𝑡⟩ ∧ ⟨𝑧, 𝑣⟩ ∈ ⟨𝑢, 𝑡⟩) → 𝑤 = 𝑣))
29 opex 4898 . . . . . . . . . . 11 𝑥, 𝑥⟩ ∈ V
3029prid1 4272 . . . . . . . . . 10 𝑥, 𝑥⟩ ∈ {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩}
31 eleq2 2687 . . . . . . . . . 10 (⟨𝑢, 𝑡⟩ = {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩} → (⟨𝑥, 𝑥⟩ ∈ ⟨𝑢, 𝑡⟩ ↔ ⟨𝑥, 𝑥⟩ ∈ {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩}))
3230, 31mpbiri 248 . . . . . . . . 9 (⟨𝑢, 𝑡⟩ = {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩} → ⟨𝑥, 𝑥⟩ ∈ ⟨𝑢, 𝑡⟩)
33 opex 4898 . . . . . . . . . . 11 𝑥, 𝑦⟩ ∈ V
3433prid2 4273 . . . . . . . . . 10 𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩}
35 eleq2 2687 . . . . . . . . . 10 (⟨𝑢, 𝑡⟩ = {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩} → (⟨𝑥, 𝑦⟩ ∈ ⟨𝑢, 𝑡⟩ ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩}))
3634, 35mpbiri 248 . . . . . . . . 9 (⟨𝑢, 𝑡⟩ = {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩} → ⟨𝑥, 𝑦⟩ ∈ ⟨𝑢, 𝑡⟩)
3732, 36jca 554 . . . . . . . 8 (⟨𝑢, 𝑡⟩ = {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩} → (⟨𝑥, 𝑥⟩ ∈ ⟨𝑢, 𝑡⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ ⟨𝑢, 𝑡⟩))
38 opeq12 4377 . . . . . . . . . . . . . 14 ((𝑧 = 𝑥𝑤 = 𝑥) → ⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑥⟩)
39383adant3 1079 . . . . . . . . . . . . 13 ((𝑧 = 𝑥𝑤 = 𝑥𝑣 = 𝑦) → ⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑥⟩)
4039eleq1d 2683 . . . . . . . . . . . 12 ((𝑧 = 𝑥𝑤 = 𝑥𝑣 = 𝑦) → (⟨𝑧, 𝑤⟩ ∈ ⟨𝑢, 𝑡⟩ ↔ ⟨𝑥, 𝑥⟩ ∈ ⟨𝑢, 𝑡⟩))
41 opeq12 4377 . . . . . . . . . . . . . 14 ((𝑧 = 𝑥𝑣 = 𝑦) → ⟨𝑧, 𝑣⟩ = ⟨𝑥, 𝑦⟩)
42413adant2 1078 . . . . . . . . . . . . 13 ((𝑧 = 𝑥𝑤 = 𝑥𝑣 = 𝑦) → ⟨𝑧, 𝑣⟩ = ⟨𝑥, 𝑦⟩)
4342eleq1d 2683 . . . . . . . . . . . 12 ((𝑧 = 𝑥𝑤 = 𝑥𝑣 = 𝑦) → (⟨𝑧, 𝑣⟩ ∈ ⟨𝑢, 𝑡⟩ ↔ ⟨𝑥, 𝑦⟩ ∈ ⟨𝑢, 𝑡⟩))
4440, 43anbi12d 746 . . . . . . . . . . 11 ((𝑧 = 𝑥𝑤 = 𝑥𝑣 = 𝑦) → ((⟨𝑧, 𝑤⟩ ∈ ⟨𝑢, 𝑡⟩ ∧ ⟨𝑧, 𝑣⟩ ∈ ⟨𝑢, 𝑡⟩) ↔ (⟨𝑥, 𝑥⟩ ∈ ⟨𝑢, 𝑡⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ ⟨𝑢, 𝑡⟩)))
45 eqeq12 2634 . . . . . . . . . . . 12 ((𝑤 = 𝑥𝑣 = 𝑦) → (𝑤 = 𝑣𝑥 = 𝑦))
46453adant1 1077 . . . . . . . . . . 11 ((𝑧 = 𝑥𝑤 = 𝑥𝑣 = 𝑦) → (𝑤 = 𝑣𝑥 = 𝑦))
4744, 46imbi12d 334 . . . . . . . . . 10 ((𝑧 = 𝑥𝑤 = 𝑥𝑣 = 𝑦) → (((⟨𝑧, 𝑤⟩ ∈ ⟨𝑢, 𝑡⟩ ∧ ⟨𝑧, 𝑣⟩ ∈ ⟨𝑢, 𝑡⟩) → 𝑤 = 𝑣) ↔ ((⟨𝑥, 𝑥⟩ ∈ ⟨𝑢, 𝑡⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ ⟨𝑢, 𝑡⟩) → 𝑥 = 𝑦)))
4847spc3gv 3287 . . . . . . . . 9 ((𝑥 ∈ V ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → (∀𝑧𝑤𝑣((⟨𝑧, 𝑤⟩ ∈ ⟨𝑢, 𝑡⟩ ∧ ⟨𝑧, 𝑣⟩ ∈ ⟨𝑢, 𝑡⟩) → 𝑤 = 𝑣) → ((⟨𝑥, 𝑥⟩ ∈ ⟨𝑢, 𝑡⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ ⟨𝑢, 𝑡⟩) → 𝑥 = 𝑦)))
4915, 15, 18, 48mp3an 1421 . . . . . . . 8 (∀𝑧𝑤𝑣((⟨𝑧, 𝑤⟩ ∈ ⟨𝑢, 𝑡⟩ ∧ ⟨𝑧, 𝑣⟩ ∈ ⟨𝑢, 𝑡⟩) → 𝑤 = 𝑣) → ((⟨𝑥, 𝑥⟩ ∈ ⟨𝑢, 𝑡⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ ⟨𝑢, 𝑡⟩) → 𝑥 = 𝑦))
5028, 37, 49syl2im 40 . . . . . . 7 (Fun ⟨𝑢, 𝑡⟩ → (⟨𝑢, 𝑡⟩ = {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩} → 𝑥 = 𝑦))
5126, 50syl5bi 232 . . . . . 6 (Fun ⟨𝑢, 𝑡⟩ → ((𝑢 = {𝑥} ∧ 𝑡 = {𝑥, 𝑦}) → 𝑥 = 𝑦))
52 dfsn2 4166 . . . . . . . . . . 11 {𝑥} = {𝑥, 𝑥}
53 preq2 4244 . . . . . . . . . . 11 (𝑥 = 𝑦 → {𝑥, 𝑥} = {𝑥, 𝑦})
5452, 53syl5req 2668 . . . . . . . . . 10 (𝑥 = 𝑦 → {𝑥, 𝑦} = {𝑥})
5554eqeq2d 2631 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑡 = {𝑥, 𝑦} ↔ 𝑡 = {𝑥}))
56 eqtr3 2642 . . . . . . . . . 10 ((𝑢 = {𝑥} ∧ 𝑡 = {𝑥}) → 𝑢 = 𝑡)
5756expcom 451 . . . . . . . . 9 (𝑡 = {𝑥} → (𝑢 = {𝑥} → 𝑢 = 𝑡))
5855, 57syl6bi 243 . . . . . . . 8 (𝑥 = 𝑦 → (𝑡 = {𝑥, 𝑦} → (𝑢 = {𝑥} → 𝑢 = 𝑡)))
5958com13 88 . . . . . . 7 (𝑢 = {𝑥} → (𝑡 = {𝑥, 𝑦} → (𝑥 = 𝑦𝑢 = 𝑡)))
6059imp 445 . . . . . 6 ((𝑢 = {𝑥} ∧ 𝑡 = {𝑥, 𝑦}) → (𝑥 = 𝑦𝑢 = 𝑡))
6151, 60sylcom 30 . . . . 5 (Fun ⟨𝑢, 𝑡⟩ → ((𝑢 = {𝑥} ∧ 𝑡 = {𝑥, 𝑦}) → 𝑢 = 𝑡))
6261exlimdvv 1859 . . . 4 (Fun ⟨𝑢, 𝑡⟩ → (∃𝑥𝑦(𝑢 = {𝑥} ∧ 𝑡 = {𝑥, 𝑦}) → 𝑢 = 𝑡))
6313, 62mpd 15 . . 3 (Fun ⟨𝑢, 𝑡⟩ → 𝑢 = 𝑡)
644, 8, 63vtocl2g 3259 . 2 ((𝐴𝑉𝐵𝑊) → (Fun ⟨𝐴, 𝐵⟩ → 𝐴 = 𝐵))
65643impia 1258 1 ((𝐴𝑉𝐵𝑊 ∧ Fun ⟨𝐴, 𝐵⟩) → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036  wal 1478   = wceq 1480  wex 1701  wcel 1987  Vcvv 3189  {csn 4153  {cpr 4155  cop 4159  Rel wrel 5084  Fun wfun 5846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pr 4872
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rab 2916  df-v 3191  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-br 4619  df-opab 4679  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-fun 5854
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator