MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvprif Structured version   Visualization version   GIF version

Theorem fvprif 16834
Description: The value of the pair function at an element of 2o. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
fvprif ((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝐶) = if(𝐶 = ∅, 𝐴, 𝐵))

Proof of Theorem fvprif
StepHypRef Expression
1 fvpr0o 16832 . . . . 5 (𝐴𝑉 → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘∅) = 𝐴)
213ad2ant1 1129 . . . 4 ((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘∅) = 𝐴)
32adantr 483 . . 3 (((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) ∧ 𝐶 = ∅) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘∅) = 𝐴)
4 simpr 487 . . . 4 (((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) ∧ 𝐶 = ∅) → 𝐶 = ∅)
54fveq2d 6674 . . 3 (((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) ∧ 𝐶 = ∅) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝐶) = ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘∅))
64iftrued 4475 . . 3 (((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) ∧ 𝐶 = ∅) → if(𝐶 = ∅, 𝐴, 𝐵) = 𝐴)
73, 5, 63eqtr4d 2866 . 2 (((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) ∧ 𝐶 = ∅) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝐶) = if(𝐶 = ∅, 𝐴, 𝐵))
8 fvpr1o 16833 . . . . 5 (𝐵𝑊 → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o) = 𝐵)
983ad2ant2 1130 . . . 4 ((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o) = 𝐵)
109adantr 483 . . 3 (((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) ∧ 𝐶 = 1o) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o) = 𝐵)
11 simpr 487 . . . 4 (((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) ∧ 𝐶 = 1o) → 𝐶 = 1o)
1211fveq2d 6674 . . 3 (((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) ∧ 𝐶 = 1o) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝐶) = ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o))
13 1n0 8119 . . . . . 6 1o ≠ ∅
1413neii 3018 . . . . 5 ¬ 1o = ∅
1511eqeq1d 2823 . . . . 5 (((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) ∧ 𝐶 = 1o) → (𝐶 = ∅ ↔ 1o = ∅))
1614, 15mtbiri 329 . . . 4 (((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) ∧ 𝐶 = 1o) → ¬ 𝐶 = ∅)
1716iffalsed 4478 . . 3 (((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) ∧ 𝐶 = 1o) → if(𝐶 = ∅, 𝐴, 𝐵) = 𝐵)
1810, 12, 173eqtr4d 2866 . 2 (((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) ∧ 𝐶 = 1o) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝐶) = if(𝐶 = ∅, 𝐴, 𝐵))
19 elpri 4589 . . . 4 (𝐶 ∈ {∅, 1o} → (𝐶 = ∅ ∨ 𝐶 = 1o))
20 df2o3 8117 . . . 4 2o = {∅, 1o}
2119, 20eleq2s 2931 . . 3 (𝐶 ∈ 2o → (𝐶 = ∅ ∨ 𝐶 = 1o))
22213ad2ant3 1131 . 2 ((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) → (𝐶 = ∅ ∨ 𝐶 = 1o))
237, 18, 22mpjaodan 955 1 ((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝐶) = if(𝐶 = ∅, 𝐴, 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  c0 4291  ifcif 4467  {cpr 4569  cop 4573  cfv 6355  1oc1o 8095  2oc2o 8096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-res 5567  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fv 6363  df-om 7581  df-1o 8102  df-2o 8103
This theorem is referenced by:  xpsrnbas  16844  xpsaddlem  16846  xpsvsca  16850
  Copyright terms: Public domain W3C validator