MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvrn0 Structured version   Visualization version   GIF version

Theorem fvrn0 6698
Description: A function value is a member of the range plus null. (Contributed by Scott Fenton, 8-Jun-2011.) (Revised by Stefan O'Rear, 3-Jan-2015.)
Assertion
Ref Expression
fvrn0 (𝐹𝑋) ∈ (ran 𝐹 ∪ {∅})

Proof of Theorem fvrn0
StepHypRef Expression
1 id 22 . . 3 ((𝐹𝑋) = ∅ → (𝐹𝑋) = ∅)
2 ssun2 4149 . . . 4 {∅} ⊆ (ran 𝐹 ∪ {∅})
3 0ex 5211 . . . . 5 ∅ ∈ V
43snid 4601 . . . 4 ∅ ∈ {∅}
52, 4sselii 3964 . . 3 ∅ ∈ (ran 𝐹 ∪ {∅})
61, 5eqeltrdi 2921 . 2 ((𝐹𝑋) = ∅ → (𝐹𝑋) ∈ (ran 𝐹 ∪ {∅}))
7 ssun1 4148 . . 3 ran 𝐹 ⊆ (ran 𝐹 ∪ {∅})
8 fvprc 6663 . . . . 5 𝑋 ∈ V → (𝐹𝑋) = ∅)
98con1i 149 . . . 4 (¬ (𝐹𝑋) = ∅ → 𝑋 ∈ V)
10 fvexd 6685 . . . 4 (¬ (𝐹𝑋) = ∅ → (𝐹𝑋) ∈ V)
11 fvbr0 6697 . . . . . 6 (𝑋𝐹(𝐹𝑋) ∨ (𝐹𝑋) = ∅)
1211ori 857 . . . . 5 𝑋𝐹(𝐹𝑋) → (𝐹𝑋) = ∅)
1312con1i 149 . . . 4 (¬ (𝐹𝑋) = ∅ → 𝑋𝐹(𝐹𝑋))
14 brelrng 5811 . . . 4 ((𝑋 ∈ V ∧ (𝐹𝑋) ∈ V ∧ 𝑋𝐹(𝐹𝑋)) → (𝐹𝑋) ∈ ran 𝐹)
159, 10, 13, 14syl3anc 1367 . . 3 (¬ (𝐹𝑋) = ∅ → (𝐹𝑋) ∈ ran 𝐹)
167, 15sseldi 3965 . 2 (¬ (𝐹𝑋) = ∅ → (𝐹𝑋) ∈ (ran 𝐹 ∪ {∅}))
176, 16pm2.61i 184 1 (𝐹𝑋) ∈ (ran 𝐹 ∪ {∅})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  wcel 2114  Vcvv 3494  cun 3934  c0 4291  {csn 4567   class class class wbr 5066  ran crn 5556  cfv 6355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-cnv 5563  df-dm 5565  df-rn 5566  df-iota 6314  df-fv 6363
This theorem is referenced by:  fvssunirn  6699  dfac4  9548  dfac2b  9556  dfacacn  9567  axdc2lem  9870  axcclem  9879  seqexw  13386  plusffval  17858  grpsubfval  18147  mulgfval  18226  staffval  19618  scaffval  19652  lpival  20018  ipffval  20792  nmfval  23198  tcphex  23820  tchnmfval  23831  orderseqlem  33094  rrnval  35120  lsatset  36141  fvnonrel  39977
  Copyright terms: Public domain W3C validator