![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grothtsk | Structured version Visualization version GIF version |
Description: The Tarski-Grothendieck Axiom, using abbreviations. (Contributed by Mario Carneiro, 28-May-2013.) |
Ref | Expression |
---|---|
grothtsk | ⊢ ∪ Tarski = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axgroth5 9838 | . . . . 5 ⊢ ∃𝑥(𝑤 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝒫 𝑦 ⊆ 𝑥 ∧ ∃𝑧 ∈ 𝑥 𝒫 𝑦 ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ≈ 𝑥 ∨ 𝑦 ∈ 𝑥)) | |
2 | vex 3343 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
3 | eltskg 9764 | . . . . . . . . 9 ⊢ (𝑥 ∈ V → (𝑥 ∈ Tarski ↔ (∀𝑦 ∈ 𝑥 (𝒫 𝑦 ⊆ 𝑥 ∧ ∃𝑧 ∈ 𝑥 𝒫 𝑦 ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ≈ 𝑥 ∨ 𝑦 ∈ 𝑥)))) | |
4 | 2, 3 | ax-mp 5 | . . . . . . . 8 ⊢ (𝑥 ∈ Tarski ↔ (∀𝑦 ∈ 𝑥 (𝒫 𝑦 ⊆ 𝑥 ∧ ∃𝑧 ∈ 𝑥 𝒫 𝑦 ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ≈ 𝑥 ∨ 𝑦 ∈ 𝑥))) |
5 | 4 | anbi2i 732 | . . . . . . 7 ⊢ ((𝑤 ∈ 𝑥 ∧ 𝑥 ∈ Tarski) ↔ (𝑤 ∈ 𝑥 ∧ (∀𝑦 ∈ 𝑥 (𝒫 𝑦 ⊆ 𝑥 ∧ ∃𝑧 ∈ 𝑥 𝒫 𝑦 ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ≈ 𝑥 ∨ 𝑦 ∈ 𝑥)))) |
6 | 3anass 1081 | . . . . . . 7 ⊢ ((𝑤 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝒫 𝑦 ⊆ 𝑥 ∧ ∃𝑧 ∈ 𝑥 𝒫 𝑦 ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ≈ 𝑥 ∨ 𝑦 ∈ 𝑥)) ↔ (𝑤 ∈ 𝑥 ∧ (∀𝑦 ∈ 𝑥 (𝒫 𝑦 ⊆ 𝑥 ∧ ∃𝑧 ∈ 𝑥 𝒫 𝑦 ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ≈ 𝑥 ∨ 𝑦 ∈ 𝑥)))) | |
7 | 5, 6 | bitr4i 267 | . . . . . 6 ⊢ ((𝑤 ∈ 𝑥 ∧ 𝑥 ∈ Tarski) ↔ (𝑤 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝒫 𝑦 ⊆ 𝑥 ∧ ∃𝑧 ∈ 𝑥 𝒫 𝑦 ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ≈ 𝑥 ∨ 𝑦 ∈ 𝑥))) |
8 | 7 | exbii 1923 | . . . . 5 ⊢ (∃𝑥(𝑤 ∈ 𝑥 ∧ 𝑥 ∈ Tarski) ↔ ∃𝑥(𝑤 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝒫 𝑦 ⊆ 𝑥 ∧ ∃𝑧 ∈ 𝑥 𝒫 𝑦 ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ≈ 𝑥 ∨ 𝑦 ∈ 𝑥))) |
9 | 1, 8 | mpbir 221 | . . . 4 ⊢ ∃𝑥(𝑤 ∈ 𝑥 ∧ 𝑥 ∈ Tarski) |
10 | eluni 4591 | . . . 4 ⊢ (𝑤 ∈ ∪ Tarski ↔ ∃𝑥(𝑤 ∈ 𝑥 ∧ 𝑥 ∈ Tarski)) | |
11 | 9, 10 | mpbir 221 | . . 3 ⊢ 𝑤 ∈ ∪ Tarski |
12 | vex 3343 | . . 3 ⊢ 𝑤 ∈ V | |
13 | 11, 12 | 2th 254 | . 2 ⊢ (𝑤 ∈ ∪ Tarski ↔ 𝑤 ∈ V) |
14 | 13 | eqriv 2757 | 1 ⊢ ∪ Tarski = V |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∨ wo 382 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∃wex 1853 ∈ wcel 2139 ∀wral 3050 ∃wrex 3051 Vcvv 3340 ⊆ wss 3715 𝒫 cpw 4302 ∪ cuni 4588 class class class wbr 4804 ≈ cen 8118 Tarskictsk 9762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-groth 9837 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-tsk 9763 |
This theorem is referenced by: inaprc 9850 tskmval 9853 tskmcl 9855 |
Copyright terms: Public domain | W3C validator |