MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpofo Structured version   Visualization version   GIF version

Theorem grpofo 27658
Description: A group operation maps onto the group's underlying set. (Contributed by NM, 30-Oct-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
grpfo.1 𝑋 = ran 𝐺
Assertion
Ref Expression
grpofo (𝐺 ∈ GrpOp → 𝐺:(𝑋 × 𝑋)–onto𝑋)

Proof of Theorem grpofo
Dummy variables 𝑥 𝑦 𝑧 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpfo.1 . . . . . 6 𝑋 = ran 𝐺
21isgrpo 27656 . . . . 5 (𝐺 ∈ GrpOp → (𝐺 ∈ GrpOp ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑢))))
32ibi 256 . . . 4 (𝐺 ∈ GrpOp → (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑢)))
43simp1d 1137 . . 3 (𝐺 ∈ GrpOp → 𝐺:(𝑋 × 𝑋)⟶𝑋)
51eqcomi 2765 . . 3 ran 𝐺 = 𝑋
64, 5jctir 562 . 2 (𝐺 ∈ GrpOp → (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ran 𝐺 = 𝑋))
7 dffo2 6276 . 2 (𝐺:(𝑋 × 𝑋)–onto𝑋 ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ran 𝐺 = 𝑋))
86, 7sylibr 224 1 (𝐺 ∈ GrpOp → 𝐺:(𝑋 × 𝑋)–onto𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1628  wcel 2135  wral 3046  wrex 3047   × cxp 5260  ran crn 5263  wf 6041  ontowfo 6043  (class class class)co 6809  GrpOpcgr 27648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-8 2137  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-sep 4929  ax-nul 4937  ax-pr 5051  ax-un 7110
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1631  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ral 3051  df-rex 3052  df-rab 3055  df-v 3338  df-sbc 3573  df-csb 3671  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-nul 4055  df-if 4227  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4585  df-iun 4670  df-br 4801  df-opab 4861  df-mpt 4878  df-id 5170  df-xp 5268  df-rel 5269  df-cnv 5270  df-co 5271  df-dm 5272  df-rn 5273  df-iota 6008  df-fun 6047  df-fn 6048  df-f 6049  df-fo 6051  df-fv 6053  df-ov 6812  df-grpo 27652
This theorem is referenced by:  grpocl  27659  grporndm  27669  grporn  27680  nvgf  27778  hhssabloilem  28423  rngosn3  34032  rngodm1dm2  34040
  Copyright terms: Public domain W3C validator