![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > haushmphlem | Structured version Visualization version GIF version |
Description: Lemma for haushmph 21643 and similar theorems. If the topological property 𝐴 is preserved under injective preimages, then property 𝐴 is preserved under homeomorphisms. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
haushmphlem.1 | ⊢ (𝐽 ∈ 𝐴 → 𝐽 ∈ Top) |
haushmphlem.2 | ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑓:∪ 𝐾–1-1→∪ 𝐽 ∧ 𝑓 ∈ (𝐾 Cn 𝐽)) → 𝐾 ∈ 𝐴) |
Ref | Expression |
---|---|
haushmphlem | ⊢ (𝐽 ≃ 𝐾 → (𝐽 ∈ 𝐴 → 𝐾 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmphsym 21633 | . 2 ⊢ (𝐽 ≃ 𝐾 → 𝐾 ≃ 𝐽) | |
2 | hmph 21627 | . . 3 ⊢ (𝐾 ≃ 𝐽 ↔ (𝐾Homeo𝐽) ≠ ∅) | |
3 | n0 3964 | . . . 4 ⊢ ((𝐾Homeo𝐽) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐾Homeo𝐽)) | |
4 | simpl 472 | . . . . . . 7 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑓 ∈ (𝐾Homeo𝐽)) → 𝐽 ∈ 𝐴) | |
5 | eqid 2651 | . . . . . . . . . 10 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
6 | eqid 2651 | . . . . . . . . . 10 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
7 | 5, 6 | hmeof1o 21615 | . . . . . . . . 9 ⊢ (𝑓 ∈ (𝐾Homeo𝐽) → 𝑓:∪ 𝐾–1-1-onto→∪ 𝐽) |
8 | 7 | adantl 481 | . . . . . . . 8 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑓 ∈ (𝐾Homeo𝐽)) → 𝑓:∪ 𝐾–1-1-onto→∪ 𝐽) |
9 | f1of1 6174 | . . . . . . . 8 ⊢ (𝑓:∪ 𝐾–1-1-onto→∪ 𝐽 → 𝑓:∪ 𝐾–1-1→∪ 𝐽) | |
10 | 8, 9 | syl 17 | . . . . . . 7 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑓 ∈ (𝐾Homeo𝐽)) → 𝑓:∪ 𝐾–1-1→∪ 𝐽) |
11 | hmeocn 21611 | . . . . . . . 8 ⊢ (𝑓 ∈ (𝐾Homeo𝐽) → 𝑓 ∈ (𝐾 Cn 𝐽)) | |
12 | 11 | adantl 481 | . . . . . . 7 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑓 ∈ (𝐾Homeo𝐽)) → 𝑓 ∈ (𝐾 Cn 𝐽)) |
13 | haushmphlem.2 | . . . . . . 7 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑓:∪ 𝐾–1-1→∪ 𝐽 ∧ 𝑓 ∈ (𝐾 Cn 𝐽)) → 𝐾 ∈ 𝐴) | |
14 | 4, 10, 12, 13 | syl3anc 1366 | . . . . . 6 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑓 ∈ (𝐾Homeo𝐽)) → 𝐾 ∈ 𝐴) |
15 | 14 | expcom 450 | . . . . 5 ⊢ (𝑓 ∈ (𝐾Homeo𝐽) → (𝐽 ∈ 𝐴 → 𝐾 ∈ 𝐴)) |
16 | 15 | exlimiv 1898 | . . . 4 ⊢ (∃𝑓 𝑓 ∈ (𝐾Homeo𝐽) → (𝐽 ∈ 𝐴 → 𝐾 ∈ 𝐴)) |
17 | 3, 16 | sylbi 207 | . . 3 ⊢ ((𝐾Homeo𝐽) ≠ ∅ → (𝐽 ∈ 𝐴 → 𝐾 ∈ 𝐴)) |
18 | 2, 17 | sylbi 207 | . 2 ⊢ (𝐾 ≃ 𝐽 → (𝐽 ∈ 𝐴 → 𝐾 ∈ 𝐴)) |
19 | 1, 18 | syl 17 | 1 ⊢ (𝐽 ≃ 𝐾 → (𝐽 ∈ 𝐴 → 𝐾 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 ∃wex 1744 ∈ wcel 2030 ≠ wne 2823 ∅c0 3948 ∪ cuni 4468 class class class wbr 4685 –1-1→wf1 5923 –1-1-onto→wf1o 5925 (class class class)co 6690 Topctop 20746 Cn ccn 21076 Homeochmeo 21604 ≃ chmph 21605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-1st 7210 df-2nd 7211 df-1o 7605 df-map 7901 df-top 20747 df-topon 20764 df-cn 21079 df-hmeo 21606 df-hmph 21607 |
This theorem is referenced by: t0hmph 21641 t1hmph 21642 haushmph 21643 |
Copyright terms: Public domain | W3C validator |