MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  t0hmph Structured version   Visualization version   GIF version

Theorem t0hmph 21533
Description: T0 is a topological property. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
t0hmph (𝐽𝐾 → (𝐽 ∈ Kol2 → 𝐾 ∈ Kol2))

Proof of Theorem t0hmph
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 t0top 21073 . 2 (𝐽 ∈ Kol2 → 𝐽 ∈ Top)
2 cnt0 21090 . 2 ((𝐽 ∈ Kol2 ∧ 𝑓: 𝐾1-1 𝐽𝑓 ∈ (𝐾 Cn 𝐽)) → 𝐾 ∈ Kol2)
31, 2haushmphlem 21530 1 (𝐽𝐾 → (𝐽 ∈ Kol2 → 𝐾 ∈ Kol2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 1987   cuni 4409   class class class wbr 4623  Kol2ct0 21050  chmph 21497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-1st 7128  df-2nd 7129  df-1o 7520  df-map 7819  df-top 20639  df-topon 20656  df-cn 20971  df-t0 21057  df-hmeo 21498  df-hmph 21499
This theorem is referenced by:  t0kq  21561  kqhmph  21562
  Copyright terms: Public domain W3C validator