MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idfuval Structured version   Visualization version   GIF version

Theorem idfuval 17146
Description: Value of the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
idfuval.i 𝐼 = (idfunc𝐶)
idfuval.b 𝐵 = (Base‘𝐶)
idfuval.c (𝜑𝐶 ∈ Cat)
idfuval.h 𝐻 = (Hom ‘𝐶)
Assertion
Ref Expression
idfuval (𝜑𝐼 = ⟨( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻𝑧)))⟩)
Distinct variable groups:   𝑧,𝐵   𝑧,𝐶   𝑧,𝐻   𝜑,𝑧
Allowed substitution hint:   𝐼(𝑧)

Proof of Theorem idfuval
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idfuval.i . 2 𝐼 = (idfunc𝐶)
2 idfuval.c . . 3 (𝜑𝐶 ∈ Cat)
3 fvexd 6685 . . . . 5 (𝑐 = 𝐶 → (Base‘𝑐) ∈ V)
4 fveq2 6670 . . . . . 6 (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶))
5 idfuval.b . . . . . 6 𝐵 = (Base‘𝐶)
64, 5syl6eqr 2874 . . . . 5 (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵)
7 simpr 487 . . . . . . 7 ((𝑐 = 𝐶𝑏 = 𝐵) → 𝑏 = 𝐵)
87reseq2d 5853 . . . . . 6 ((𝑐 = 𝐶𝑏 = 𝐵) → ( I ↾ 𝑏) = ( I ↾ 𝐵))
97sqxpeqd 5587 . . . . . . 7 ((𝑐 = 𝐶𝑏 = 𝐵) → (𝑏 × 𝑏) = (𝐵 × 𝐵))
10 simpl 485 . . . . . . . . . . 11 ((𝑐 = 𝐶𝑏 = 𝐵) → 𝑐 = 𝐶)
1110fveq2d 6674 . . . . . . . . . 10 ((𝑐 = 𝐶𝑏 = 𝐵) → (Hom ‘𝑐) = (Hom ‘𝐶))
12 idfuval.h . . . . . . . . . 10 𝐻 = (Hom ‘𝐶)
1311, 12syl6eqr 2874 . . . . . . . . 9 ((𝑐 = 𝐶𝑏 = 𝐵) → (Hom ‘𝑐) = 𝐻)
1413fveq1d 6672 . . . . . . . 8 ((𝑐 = 𝐶𝑏 = 𝐵) → ((Hom ‘𝑐)‘𝑧) = (𝐻𝑧))
1514reseq2d 5853 . . . . . . 7 ((𝑐 = 𝐶𝑏 = 𝐵) → ( I ↾ ((Hom ‘𝑐)‘𝑧)) = ( I ↾ (𝐻𝑧)))
169, 15mpteq12dv 5151 . . . . . 6 ((𝑐 = 𝐶𝑏 = 𝐵) → (𝑧 ∈ (𝑏 × 𝑏) ↦ ( I ↾ ((Hom ‘𝑐)‘𝑧))) = (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻𝑧))))
178, 16opeq12d 4811 . . . . 5 ((𝑐 = 𝐶𝑏 = 𝐵) → ⟨( I ↾ 𝑏), (𝑧 ∈ (𝑏 × 𝑏) ↦ ( I ↾ ((Hom ‘𝑐)‘𝑧)))⟩ = ⟨( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻𝑧)))⟩)
183, 6, 17csbied2 3920 . . . 4 (𝑐 = 𝐶(Base‘𝑐) / 𝑏⟨( I ↾ 𝑏), (𝑧 ∈ (𝑏 × 𝑏) ↦ ( I ↾ ((Hom ‘𝑐)‘𝑧)))⟩ = ⟨( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻𝑧)))⟩)
19 df-idfu 17129 . . . 4 idfunc = (𝑐 ∈ Cat ↦ (Base‘𝑐) / 𝑏⟨( I ↾ 𝑏), (𝑧 ∈ (𝑏 × 𝑏) ↦ ( I ↾ ((Hom ‘𝑐)‘𝑧)))⟩)
20 opex 5356 . . . 4 ⟨( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻𝑧)))⟩ ∈ V
2118, 19, 20fvmpt 6768 . . 3 (𝐶 ∈ Cat → (idfunc𝐶) = ⟨( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻𝑧)))⟩)
222, 21syl 17 . 2 (𝜑 → (idfunc𝐶) = ⟨( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻𝑧)))⟩)
231, 22syl5eq 2868 1 (𝜑𝐼 = ⟨( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻𝑧)))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  Vcvv 3494  csb 3883  cop 4573  cmpt 5146   I cid 5459   × cxp 5553  cres 5557  cfv 6355  Basecbs 16483  Hom chom 16576  Catccat 16935  idfunccidfu 17125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-res 5567  df-iota 6314  df-fun 6357  df-fv 6363  df-idfu 17129
This theorem is referenced by:  idfu2nd  17147  idfu1st  17149  idfucl  17151  catcisolem  17366  curf2ndf  17497  idfusubc0  44156
  Copyright terms: Public domain W3C validator