MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idfu2nd Structured version   Visualization version   GIF version

Theorem idfu2nd 16306
Description: Value of the morphism part of the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
idfuval.i 𝐼 = (idfunc𝐶)
idfuval.b 𝐵 = (Base‘𝐶)
idfuval.c (𝜑𝐶 ∈ Cat)
idfuval.h 𝐻 = (Hom ‘𝐶)
idfu2nd.x (𝜑𝑋𝐵)
idfu2nd.y (𝜑𝑌𝐵)
Assertion
Ref Expression
idfu2nd (𝜑 → (𝑋(2nd𝐼)𝑌) = ( I ↾ (𝑋𝐻𝑌)))

Proof of Theorem idfu2nd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-ov 6530 . 2 (𝑋(2nd𝐼)𝑌) = ((2nd𝐼)‘⟨𝑋, 𝑌⟩)
2 idfuval.i . . . . . 6 𝐼 = (idfunc𝐶)
3 idfuval.b . . . . . 6 𝐵 = (Base‘𝐶)
4 idfuval.c . . . . . 6 (𝜑𝐶 ∈ Cat)
5 idfuval.h . . . . . 6 𝐻 = (Hom ‘𝐶)
62, 3, 4, 5idfuval 16305 . . . . 5 (𝜑𝐼 = ⟨( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻𝑧)))⟩)
76fveq2d 6092 . . . 4 (𝜑 → (2nd𝐼) = (2nd ‘⟨( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻𝑧)))⟩))
8 fvex 6098 . . . . . . 7 (Base‘𝐶) ∈ V
93, 8eqeltri 2683 . . . . . 6 𝐵 ∈ V
10 resiexg 6971 . . . . . 6 (𝐵 ∈ V → ( I ↾ 𝐵) ∈ V)
119, 10ax-mp 5 . . . . 5 ( I ↾ 𝐵) ∈ V
129, 9xpex 6837 . . . . . 6 (𝐵 × 𝐵) ∈ V
1312mptex 6368 . . . . 5 (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻𝑧))) ∈ V
1411, 13op2nd 7045 . . . 4 (2nd ‘⟨( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻𝑧)))⟩) = (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻𝑧)))
157, 14syl6eq 2659 . . 3 (𝜑 → (2nd𝐼) = (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻𝑧))))
16 simpr 475 . . . . . 6 ((𝜑𝑧 = ⟨𝑋, 𝑌⟩) → 𝑧 = ⟨𝑋, 𝑌⟩)
1716fveq2d 6092 . . . . 5 ((𝜑𝑧 = ⟨𝑋, 𝑌⟩) → (𝐻𝑧) = (𝐻‘⟨𝑋, 𝑌⟩))
18 df-ov 6530 . . . . 5 (𝑋𝐻𝑌) = (𝐻‘⟨𝑋, 𝑌⟩)
1917, 18syl6eqr 2661 . . . 4 ((𝜑𝑧 = ⟨𝑋, 𝑌⟩) → (𝐻𝑧) = (𝑋𝐻𝑌))
2019reseq2d 5304 . . 3 ((𝜑𝑧 = ⟨𝑋, 𝑌⟩) → ( I ↾ (𝐻𝑧)) = ( I ↾ (𝑋𝐻𝑌)))
21 idfu2nd.x . . . 4 (𝜑𝑋𝐵)
22 idfu2nd.y . . . 4 (𝜑𝑌𝐵)
23 opelxpi 5062 . . . 4 ((𝑋𝐵𝑌𝐵) → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
2421, 22, 23syl2anc 690 . . 3 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
25 ovex 6555 . . . 4 (𝑋𝐻𝑌) ∈ V
26 resiexg 6971 . . . 4 ((𝑋𝐻𝑌) ∈ V → ( I ↾ (𝑋𝐻𝑌)) ∈ V)
2725, 26mp1i 13 . . 3 (𝜑 → ( I ↾ (𝑋𝐻𝑌)) ∈ V)
2815, 20, 24, 27fvmptd 6182 . 2 (𝜑 → ((2nd𝐼)‘⟨𝑋, 𝑌⟩) = ( I ↾ (𝑋𝐻𝑌)))
291, 28syl5eq 2655 1 (𝜑 → (𝑋(2nd𝐼)𝑌) = ( I ↾ (𝑋𝐻𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1976  Vcvv 3172  cop 4130  cmpt 4637   I cid 4938   × cxp 5026  cres 5030  cfv 5790  (class class class)co 6527  2nd c2nd 7035  Basecbs 15641  Hom chom 15725  Catccat 16094  idfunccidfu 16284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4943  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-ov 6530  df-2nd 7037  df-idfu 16288
This theorem is referenced by:  idfu2  16307  idfucl  16310  cofulid  16319  cofurid  16320  idffth  16362  ressffth  16367  catciso  16526
  Copyright terms: Public domain W3C validator