Mathbox for Jeff Madsen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  igenss Structured version   Visualization version   GIF version

Theorem igenss 33991
 Description: A set is a subset of the ideal it generates. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
igenval.1 𝐺 = (1st𝑅)
igenval.2 𝑋 = ran 𝐺
Assertion
Ref Expression
igenss ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → 𝑆 ⊆ (𝑅 IdlGen 𝑆))

Proof of Theorem igenss
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 ssintub 4527 . 2 𝑆 {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗}
2 igenval.1 . . 3 𝐺 = (1st𝑅)
3 igenval.2 . . 3 𝑋 = ran 𝐺
42, 3igenval 33990 . 2 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → (𝑅 IdlGen 𝑆) = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗})
51, 4syl5sseqr 3687 1 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → 𝑆 ⊆ (𝑅 IdlGen 𝑆))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1523   ∈ wcel 2030  {crab 2945   ⊆ wss 3607  ∩ cint 4507  ran crn 5144  ‘cfv 5926  (class class class)co 6690  1st c1st 7208  RingOpscrngo 33823  Idlcidl 33936   IdlGen cigen 33988 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-fo 5932  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-grpo 27475  df-gid 27476  df-ablo 27527  df-rngo 33824  df-idl 33939  df-igen 33989 This theorem is referenced by:  igenval2  33995  isfldidl  33997  ispridlc  33999
 Copyright terms: Public domain W3C validator