Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  igenval Structured version   Visualization version   GIF version

Theorem igenval 35354
Description: The ideal generated by a subset of a ring. (Contributed by Jeff Madsen, 10-Jun-2010.) (Proof shortened by Mario Carneiro, 20-Dec-2013.)
Hypotheses
Ref Expression
igenval.1 𝐺 = (1st𝑅)
igenval.2 𝑋 = ran 𝐺
Assertion
Ref Expression
igenval ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → (𝑅 IdlGen 𝑆) = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗})
Distinct variable groups:   𝑅,𝑗   𝑆,𝑗   𝑗,𝑋
Allowed substitution hint:   𝐺(𝑗)

Proof of Theorem igenval
Dummy variables 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 igenval.1 . . . . . 6 𝐺 = (1st𝑅)
2 igenval.2 . . . . . 6 𝑋 = ran 𝐺
31, 2rngoidl 35317 . . . . 5 (𝑅 ∈ RingOps → 𝑋 ∈ (Idl‘𝑅))
4 sseq2 3993 . . . . . 6 (𝑗 = 𝑋 → (𝑆𝑗𝑆𝑋))
54rspcev 3623 . . . . 5 ((𝑋 ∈ (Idl‘𝑅) ∧ 𝑆𝑋) → ∃𝑗 ∈ (Idl‘𝑅)𝑆𝑗)
63, 5sylan 582 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → ∃𝑗 ∈ (Idl‘𝑅)𝑆𝑗)
7 rabn0 4339 . . . 4 ({𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ≠ ∅ ↔ ∃𝑗 ∈ (Idl‘𝑅)𝑆𝑗)
86, 7sylibr 236 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ≠ ∅)
9 intex 5240 . . 3 ({𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ≠ ∅ ↔ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ∈ V)
108, 9sylib 220 . 2 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ∈ V)
111fvexi 6684 . . . . . 6 𝐺 ∈ V
1211rnex 7617 . . . . 5 ran 𝐺 ∈ V
132, 12eqeltri 2909 . . . 4 𝑋 ∈ V
1413elpw2 5248 . . 3 (𝑆 ∈ 𝒫 𝑋𝑆𝑋)
15 simpl 485 . . . . . . 7 ((𝑟 = 𝑅𝑠 = 𝑆) → 𝑟 = 𝑅)
1615fveq2d 6674 . . . . . 6 ((𝑟 = 𝑅𝑠 = 𝑆) → (Idl‘𝑟) = (Idl‘𝑅))
17 sseq1 3992 . . . . . . 7 (𝑠 = 𝑆 → (𝑠𝑗𝑆𝑗))
1817adantl 484 . . . . . 6 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑠𝑗𝑆𝑗))
1916, 18rabeqbidv 3485 . . . . 5 ((𝑟 = 𝑅𝑠 = 𝑆) → {𝑗 ∈ (Idl‘𝑟) ∣ 𝑠𝑗} = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗})
2019inteqd 4881 . . . 4 ((𝑟 = 𝑅𝑠 = 𝑆) → {𝑗 ∈ (Idl‘𝑟) ∣ 𝑠𝑗} = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗})
21 fveq2 6670 . . . . . . . 8 (𝑟 = 𝑅 → (1st𝑟) = (1st𝑅))
2221, 1syl6eqr 2874 . . . . . . 7 (𝑟 = 𝑅 → (1st𝑟) = 𝐺)
2322rneqd 5808 . . . . . 6 (𝑟 = 𝑅 → ran (1st𝑟) = ran 𝐺)
2423, 2syl6eqr 2874 . . . . 5 (𝑟 = 𝑅 → ran (1st𝑟) = 𝑋)
2524pweqd 4558 . . . 4 (𝑟 = 𝑅 → 𝒫 ran (1st𝑟) = 𝒫 𝑋)
26 df-igen 35353 . . . 4 IdlGen = (𝑟 ∈ RingOps, 𝑠 ∈ 𝒫 ran (1st𝑟) ↦ {𝑗 ∈ (Idl‘𝑟) ∣ 𝑠𝑗})
2720, 25, 26ovmpox 7303 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ 𝒫 𝑋 {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ∈ V) → (𝑅 IdlGen 𝑆) = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗})
2814, 27syl3an2br 1403 . 2 ((𝑅 ∈ RingOps ∧ 𝑆𝑋 {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ∈ V) → (𝑅 IdlGen 𝑆) = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗})
2910, 28mpd3an3 1458 1 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → (𝑅 IdlGen 𝑆) = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3016  wrex 3139  {crab 3142  Vcvv 3494  wss 3936  c0 4291  𝒫 cpw 4539   cint 4876  ran crn 5556  cfv 6355  (class class class)co 7156  1st c1st 7687  RingOpscrngo 35187  Idlcidl 35300   IdlGen cigen 35352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-fo 6361  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-grpo 28270  df-gid 28271  df-ablo 28322  df-rngo 35188  df-idl 35303  df-igen 35353
This theorem is referenced by:  igenss  35355  igenidl  35356  igenmin  35357  igenidl2  35358  igenval2  35359
  Copyright terms: Public domain W3C validator