Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isfldidl Structured version   Visualization version   GIF version

Theorem isfldidl 35361
Description: Determine if a ring is a field based on its ideals. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
isfldidl.1 𝐺 = (1st𝐾)
isfldidl.2 𝐻 = (2nd𝐾)
isfldidl.3 𝑋 = ran 𝐺
isfldidl.4 𝑍 = (GId‘𝐺)
isfldidl.5 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
isfldidl (𝐾 ∈ Fld ↔ (𝐾 ∈ CRingOps ∧ 𝑈𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}))

Proof of Theorem isfldidl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fldcrng 35297 . . 3 (𝐾 ∈ Fld → 𝐾 ∈ CRingOps)
2 flddivrng 35292 . . . 4 (𝐾 ∈ Fld → 𝐾 ∈ DivRingOps)
3 isfldidl.1 . . . . 5 𝐺 = (1st𝐾)
4 isfldidl.2 . . . . 5 𝐻 = (2nd𝐾)
5 isfldidl.3 . . . . 5 𝑋 = ran 𝐺
6 isfldidl.4 . . . . 5 𝑍 = (GId‘𝐺)
7 isfldidl.5 . . . . 5 𝑈 = (GId‘𝐻)
83, 4, 5, 6, 7dvrunz 35247 . . . 4 (𝐾 ∈ DivRingOps → 𝑈𝑍)
92, 8syl 17 . . 3 (𝐾 ∈ Fld → 𝑈𝑍)
103, 4, 5, 6divrngidl 35321 . . . 4 (𝐾 ∈ DivRingOps → (Idl‘𝐾) = {{𝑍}, 𝑋})
112, 10syl 17 . . 3 (𝐾 ∈ Fld → (Idl‘𝐾) = {{𝑍}, 𝑋})
121, 9, 113jca 1124 . 2 (𝐾 ∈ Fld → (𝐾 ∈ CRingOps ∧ 𝑈𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}))
13 crngorngo 35293 . . . . . 6 (𝐾 ∈ CRingOps → 𝐾 ∈ RingOps)
14133ad2ant1 1129 . . . . 5 ((𝐾 ∈ CRingOps ∧ 𝑈𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) → 𝐾 ∈ RingOps)
15 simp2 1133 . . . . 5 ((𝐾 ∈ CRingOps ∧ 𝑈𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) → 𝑈𝑍)
163rneqi 5807 . . . . . . . . . . . . . . 15 ran 𝐺 = ran (1st𝐾)
175, 16eqtri 2844 . . . . . . . . . . . . . 14 𝑋 = ran (1st𝐾)
1817, 4, 7rngo1cl 35232 . . . . . . . . . . . . 13 (𝐾 ∈ RingOps → 𝑈𝑋)
1913, 18syl 17 . . . . . . . . . . . 12 (𝐾 ∈ CRingOps → 𝑈𝑋)
2019ad2antrr 724 . . . . . . . . . . 11 (((𝐾 ∈ CRingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → 𝑈𝑋)
21 eldif 3946 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑋 ∖ {𝑍}) ↔ (𝑥𝑋 ∧ ¬ 𝑥 ∈ {𝑍}))
22 snssi 4741 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑋 → {𝑥} ⊆ 𝑋)
233, 5igenss 35355 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ RingOps ∧ {𝑥} ⊆ 𝑋) → {𝑥} ⊆ (𝐾 IdlGen {𝑥}))
2422, 23sylan2 594 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ RingOps ∧ 𝑥𝑋) → {𝑥} ⊆ (𝐾 IdlGen {𝑥}))
25 vex 3497 . . . . . . . . . . . . . . . . . . . . . 22 𝑥 ∈ V
2625snss 4718 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝐾 IdlGen {𝑥}) ↔ {𝑥} ⊆ (𝐾 IdlGen {𝑥}))
2726biimpri 230 . . . . . . . . . . . . . . . . . . . 20 ({𝑥} ⊆ (𝐾 IdlGen {𝑥}) → 𝑥 ∈ (𝐾 IdlGen {𝑥}))
28 eleq2 2901 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 IdlGen {𝑥}) = {𝑍} → (𝑥 ∈ (𝐾 IdlGen {𝑥}) ↔ 𝑥 ∈ {𝑍}))
2927, 28syl5ibcom 247 . . . . . . . . . . . . . . . . . . 19 ({𝑥} ⊆ (𝐾 IdlGen {𝑥}) → ((𝐾 IdlGen {𝑥}) = {𝑍} → 𝑥 ∈ {𝑍}))
3029con3dimp 411 . . . . . . . . . . . . . . . . . 18 (({𝑥} ⊆ (𝐾 IdlGen {𝑥}) ∧ ¬ 𝑥 ∈ {𝑍}) → ¬ (𝐾 IdlGen {𝑥}) = {𝑍})
3124, 30sylan 582 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ RingOps ∧ 𝑥𝑋) ∧ ¬ 𝑥 ∈ {𝑍}) → ¬ (𝐾 IdlGen {𝑥}) = {𝑍})
3231anasss 469 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ RingOps ∧ (𝑥𝑋 ∧ ¬ 𝑥 ∈ {𝑍})) → ¬ (𝐾 IdlGen {𝑥}) = {𝑍})
3321, 32sylan2b 595 . . . . . . . . . . . . . . 15 ((𝐾 ∈ RingOps ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → ¬ (𝐾 IdlGen {𝑥}) = {𝑍})
3433adantlr 713 . . . . . . . . . . . . . 14 (((𝐾 ∈ RingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → ¬ (𝐾 IdlGen {𝑥}) = {𝑍})
35 eldifi 4103 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝑋 ∖ {𝑍}) → 𝑥𝑋)
3635snssd 4742 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝑋 ∖ {𝑍}) → {𝑥} ⊆ 𝑋)
373, 5igenidl 35356 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ RingOps ∧ {𝑥} ⊆ 𝑋) → (𝐾 IdlGen {𝑥}) ∈ (Idl‘𝐾))
3836, 37sylan2 594 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ RingOps ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (𝐾 IdlGen {𝑥}) ∈ (Idl‘𝐾))
39 eleq2 2901 . . . . . . . . . . . . . . . . . . 19 ((Idl‘𝐾) = {{𝑍}, 𝑋} → ((𝐾 IdlGen {𝑥}) ∈ (Idl‘𝐾) ↔ (𝐾 IdlGen {𝑥}) ∈ {{𝑍}, 𝑋}))
4038, 39syl5ibcom 247 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ RingOps ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → ((Idl‘𝐾) = {{𝑍}, 𝑋} → (𝐾 IdlGen {𝑥}) ∈ {{𝑍}, 𝑋}))
4140imp 409 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ RingOps ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) → (𝐾 IdlGen {𝑥}) ∈ {{𝑍}, 𝑋})
4241an32s 650 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ RingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (𝐾 IdlGen {𝑥}) ∈ {{𝑍}, 𝑋})
43 ovex 7189 . . . . . . . . . . . . . . . . 17 (𝐾 IdlGen {𝑥}) ∈ V
4443elpr 4590 . . . . . . . . . . . . . . . 16 ((𝐾 IdlGen {𝑥}) ∈ {{𝑍}, 𝑋} ↔ ((𝐾 IdlGen {𝑥}) = {𝑍} ∨ (𝐾 IdlGen {𝑥}) = 𝑋))
4542, 44sylib 220 . . . . . . . . . . . . . . 15 (((𝐾 ∈ RingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → ((𝐾 IdlGen {𝑥}) = {𝑍} ∨ (𝐾 IdlGen {𝑥}) = 𝑋))
4645ord 860 . . . . . . . . . . . . . 14 (((𝐾 ∈ RingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (¬ (𝐾 IdlGen {𝑥}) = {𝑍} → (𝐾 IdlGen {𝑥}) = 𝑋))
4734, 46mpd 15 . . . . . . . . . . . . 13 (((𝐾 ∈ RingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (𝐾 IdlGen {𝑥}) = 𝑋)
4813, 47sylanl1 678 . . . . . . . . . . . 12 (((𝐾 ∈ CRingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (𝐾 IdlGen {𝑥}) = 𝑋)
493, 4, 5prnc 35360 . . . . . . . . . . . . . 14 ((𝐾 ∈ CRingOps ∧ 𝑥𝑋) → (𝐾 IdlGen {𝑥}) = {𝑧𝑋 ∣ ∃𝑦𝑋 𝑧 = (𝑦𝐻𝑥)})
5035, 49sylan2 594 . . . . . . . . . . . . 13 ((𝐾 ∈ CRingOps ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (𝐾 IdlGen {𝑥}) = {𝑧𝑋 ∣ ∃𝑦𝑋 𝑧 = (𝑦𝐻𝑥)})
5150adantlr 713 . . . . . . . . . . . 12 (((𝐾 ∈ CRingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (𝐾 IdlGen {𝑥}) = {𝑧𝑋 ∣ ∃𝑦𝑋 𝑧 = (𝑦𝐻𝑥)})
5248, 51eqtr3d 2858 . . . . . . . . . . 11 (((𝐾 ∈ CRingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → 𝑋 = {𝑧𝑋 ∣ ∃𝑦𝑋 𝑧 = (𝑦𝐻𝑥)})
5320, 52eleqtrd 2915 . . . . . . . . . 10 (((𝐾 ∈ CRingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → 𝑈 ∈ {𝑧𝑋 ∣ ∃𝑦𝑋 𝑧 = (𝑦𝐻𝑥)})
54 eqeq1 2825 . . . . . . . . . . . 12 (𝑧 = 𝑈 → (𝑧 = (𝑦𝐻𝑥) ↔ 𝑈 = (𝑦𝐻𝑥)))
5554rexbidv 3297 . . . . . . . . . . 11 (𝑧 = 𝑈 → (∃𝑦𝑋 𝑧 = (𝑦𝐻𝑥) ↔ ∃𝑦𝑋 𝑈 = (𝑦𝐻𝑥)))
5655elrab 3680 . . . . . . . . . 10 (𝑈 ∈ {𝑧𝑋 ∣ ∃𝑦𝑋 𝑧 = (𝑦𝐻𝑥)} ↔ (𝑈𝑋 ∧ ∃𝑦𝑋 𝑈 = (𝑦𝐻𝑥)))
5753, 56sylib 220 . . . . . . . . 9 (((𝐾 ∈ CRingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (𝑈𝑋 ∧ ∃𝑦𝑋 𝑈 = (𝑦𝐻𝑥)))
5857simprd 498 . . . . . . . 8 (((𝐾 ∈ CRingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → ∃𝑦𝑋 𝑈 = (𝑦𝐻𝑥))
59 eqcom 2828 . . . . . . . . 9 ((𝑦𝐻𝑥) = 𝑈𝑈 = (𝑦𝐻𝑥))
6059rexbii 3247 . . . . . . . 8 (∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈 ↔ ∃𝑦𝑋 𝑈 = (𝑦𝐻𝑥))
6158, 60sylibr 236 . . . . . . 7 (((𝐾 ∈ CRingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → ∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈)
6261ralrimiva 3182 . . . . . 6 ((𝐾 ∈ CRingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) → ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈)
63623adant2 1127 . . . . 5 ((𝐾 ∈ CRingOps ∧ 𝑈𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) → ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈)
6414, 15, 63jca32 518 . . . 4 ((𝐾 ∈ CRingOps ∧ 𝑈𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) → (𝐾 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈)))
653, 4, 6, 5, 7isdrngo3 35252 . . . 4 (𝐾 ∈ DivRingOps ↔ (𝐾 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈)))
6664, 65sylibr 236 . . 3 ((𝐾 ∈ CRingOps ∧ 𝑈𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) → 𝐾 ∈ DivRingOps)
67 simp1 1132 . . 3 ((𝐾 ∈ CRingOps ∧ 𝑈𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) → 𝐾 ∈ CRingOps)
68 isfld2 35298 . . 3 (𝐾 ∈ Fld ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps))
6966, 67, 68sylanbrc 585 . 2 ((𝐾 ∈ CRingOps ∧ 𝑈𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) → 𝐾 ∈ Fld)
7012, 69impbii 211 1 (𝐾 ∈ Fld ↔ (𝐾 ∈ CRingOps ∧ 𝑈𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wral 3138  wrex 3139  {crab 3142  cdif 3933  wss 3936  {csn 4567  {cpr 4569  ran crn 5556  cfv 6355  (class class class)co 7156  1st c1st 7687  2nd c2nd 7688  GIdcgi 28267  RingOpscrngo 35187  DivRingOpscdrng 35241  Fldcfld 35284  CRingOpsccring 35286  Idlcidl 35300   IdlGen cigen 35352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-1o 8102  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-grpo 28270  df-gid 28271  df-ginv 28272  df-ablo 28322  df-ass 35136  df-exid 35138  df-mgmOLD 35142  df-sgrOLD 35154  df-mndo 35160  df-rngo 35188  df-drngo 35242  df-com2 35283  df-fld 35285  df-crngo 35287  df-idl 35303  df-igen 35353
This theorem is referenced by:  isfldidl2  35362
  Copyright terms: Public domain W3C validator