MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinexg Structured version   Visualization version   GIF version

Theorem iinexg 4789
Description: The existence of a class intersection. 𝑥 is normally a free-variable parameter in 𝐵, which should be read 𝐵(𝑥). (Contributed by FL, 19-Sep-2011.)
Assertion
Ref Expression
iinexg ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐶) → 𝑥𝐴 𝐵 ∈ V)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem iinexg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfiin2g 4524 . . 3 (∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
21adantl 482 . 2 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐶) → 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
3 elisset 3206 . . . . . . . . 9 (𝐵𝐶 → ∃𝑦 𝑦 = 𝐵)
43rgenw 2924 . . . . . . . 8 𝑥𝐴 (𝐵𝐶 → ∃𝑦 𝑦 = 𝐵)
5 r19.2z 4037 . . . . . . . 8 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 (𝐵𝐶 → ∃𝑦 𝑦 = 𝐵)) → ∃𝑥𝐴 (𝐵𝐶 → ∃𝑦 𝑦 = 𝐵))
64, 5mpan2 706 . . . . . . 7 (𝐴 ≠ ∅ → ∃𝑥𝐴 (𝐵𝐶 → ∃𝑦 𝑦 = 𝐵))
7 r19.35 3081 . . . . . . 7 (∃𝑥𝐴 (𝐵𝐶 → ∃𝑦 𝑦 = 𝐵) ↔ (∀𝑥𝐴 𝐵𝐶 → ∃𝑥𝐴𝑦 𝑦 = 𝐵))
86, 7sylib 208 . . . . . 6 (𝐴 ≠ ∅ → (∀𝑥𝐴 𝐵𝐶 → ∃𝑥𝐴𝑦 𝑦 = 𝐵))
98imp 445 . . . . 5 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐶) → ∃𝑥𝐴𝑦 𝑦 = 𝐵)
10 rexcom4 3216 . . . . 5 (∃𝑥𝐴𝑦 𝑦 = 𝐵 ↔ ∃𝑦𝑥𝐴 𝑦 = 𝐵)
119, 10sylib 208 . . . 4 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐶) → ∃𝑦𝑥𝐴 𝑦 = 𝐵)
12 abn0 3933 . . . 4 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ≠ ∅ ↔ ∃𝑦𝑥𝐴 𝑦 = 𝐵)
1311, 12sylibr 224 . . 3 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐶) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ≠ ∅)
14 intex 4785 . . 3 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ≠ ∅ ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V)
1513, 14sylib 208 . 2 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐶) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V)
162, 15eqeltrd 2704 1 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐶) → 𝑥𝐴 𝐵 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wex 1701  wcel 1992  {cab 2612  wne 2796  wral 2912  wrex 2913  Vcvv 3191  c0 3896   cint 4445   ciin 4491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-v 3193  df-dif 3563  df-in 3567  df-ss 3574  df-nul 3897  df-int 4446  df-iin 4493
This theorem is referenced by:  fclsval  21717  taylfval  24012  iinexd  38793  smflimlem1  40273
  Copyright terms: Public domain W3C validator