MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imacosuppOLD Structured version   Visualization version   GIF version

Theorem imacosuppOLD 7875
Description: Obsolete version of imacosupp 7874 as of 15-Sep-2023. The image of the support of the composition of two functions is the support of the outer function. (Contributed by AV, 30-May-2019.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
imacosuppOLD ((𝐹𝑉𝐺𝑊) → ((Fun 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺) → (𝐺 “ ((𝐹𝐺) supp 𝑍)) = (𝐹 supp 𝑍)))

Proof of Theorem imacosuppOLD
StepHypRef Expression
1 cnvco 5756 . . . . . . . 8 (𝐹𝐺) = (𝐺𝐹)
21imaeq1i 5926 . . . . . . 7 ((𝐹𝐺) “ (V ∖ {𝑍})) = ((𝐺𝐹) “ (V ∖ {𝑍}))
3 imaco 6104 . . . . . . 7 ((𝐺𝐹) “ (V ∖ {𝑍})) = (𝐺 “ (𝐹 “ (V ∖ {𝑍})))
42, 3eqtri 2844 . . . . . 6 ((𝐹𝐺) “ (V ∖ {𝑍})) = (𝐺 “ (𝐹 “ (V ∖ {𝑍})))
54imaeq2i 5927 . . . . 5 (𝐺 “ ((𝐹𝐺) “ (V ∖ {𝑍}))) = (𝐺 “ (𝐺 “ (𝐹 “ (V ∖ {𝑍}))))
6 funforn 6597 . . . . . . . 8 (Fun 𝐺𝐺:dom 𝐺onto→ran 𝐺)
76biimpi 218 . . . . . . 7 (Fun 𝐺𝐺:dom 𝐺onto→ran 𝐺)
87ad2antrl 726 . . . . . 6 (((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) ∧ (Fun 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺)) → 𝐺:dom 𝐺onto→ran 𝐺)
9 simpl 485 . . . . . . . . . . . . 13 ((𝐹𝑉𝐺𝑊) → 𝐹𝑉)
109anim2i 618 . . . . . . . . . . . 12 ((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) → (𝑍 ∈ V ∧ 𝐹𝑉))
1110ancomd 464 . . . . . . . . . . 11 ((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) → (𝐹𝑉𝑍 ∈ V))
12 suppimacnv 7841 . . . . . . . . . . 11 ((𝐹𝑉𝑍 ∈ V) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
1311, 12syl 17 . . . . . . . . . 10 ((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
1413sseq1d 3998 . . . . . . . . 9 ((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) → ((𝐹 supp 𝑍) ⊆ ran 𝐺 ↔ (𝐹 “ (V ∖ {𝑍})) ⊆ ran 𝐺))
1514biimpd 231 . . . . . . . 8 ((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) → ((𝐹 supp 𝑍) ⊆ ran 𝐺 → (𝐹 “ (V ∖ {𝑍})) ⊆ ran 𝐺))
1615adantld 493 . . . . . . 7 ((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) → ((Fun 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺) → (𝐹 “ (V ∖ {𝑍})) ⊆ ran 𝐺))
1716imp 409 . . . . . 6 (((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) ∧ (Fun 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺)) → (𝐹 “ (V ∖ {𝑍})) ⊆ ran 𝐺)
18 foimacnv 6632 . . . . . 6 ((𝐺:dom 𝐺onto→ran 𝐺 ∧ (𝐹 “ (V ∖ {𝑍})) ⊆ ran 𝐺) → (𝐺 “ (𝐺 “ (𝐹 “ (V ∖ {𝑍})))) = (𝐹 “ (V ∖ {𝑍})))
198, 17, 18syl2anc 586 . . . . 5 (((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) ∧ (Fun 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺)) → (𝐺 “ (𝐺 “ (𝐹 “ (V ∖ {𝑍})))) = (𝐹 “ (V ∖ {𝑍})))
205, 19syl5eq 2868 . . . 4 (((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) ∧ (Fun 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺)) → (𝐺 “ ((𝐹𝐺) “ (V ∖ {𝑍}))) = (𝐹 “ (V ∖ {𝑍})))
21 coexg 7634 . . . . . . . . 9 ((𝐹𝑉𝐺𝑊) → (𝐹𝐺) ∈ V)
2221anim2i 618 . . . . . . . 8 ((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) → (𝑍 ∈ V ∧ (𝐹𝐺) ∈ V))
2322ancomd 464 . . . . . . 7 ((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) → ((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V))
24 suppimacnv 7841 . . . . . . 7 (((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → ((𝐹𝐺) supp 𝑍) = ((𝐹𝐺) “ (V ∖ {𝑍})))
2523, 24syl 17 . . . . . 6 ((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) → ((𝐹𝐺) supp 𝑍) = ((𝐹𝐺) “ (V ∖ {𝑍})))
2625imaeq2d 5929 . . . . 5 ((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) → (𝐺 “ ((𝐹𝐺) supp 𝑍)) = (𝐺 “ ((𝐹𝐺) “ (V ∖ {𝑍}))))
2726adantr 483 . . . 4 (((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) ∧ (Fun 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺)) → (𝐺 “ ((𝐹𝐺) supp 𝑍)) = (𝐺 “ ((𝐹𝐺) “ (V ∖ {𝑍}))))
2813adantr 483 . . . 4 (((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) ∧ (Fun 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺)) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
2920, 27, 283eqtr4d 2866 . . 3 (((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) ∧ (Fun 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺)) → (𝐺 “ ((𝐹𝐺) supp 𝑍)) = (𝐹 supp 𝑍))
3029exp31 422 . 2 (𝑍 ∈ V → ((𝐹𝑉𝐺𝑊) → ((Fun 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺) → (𝐺 “ ((𝐹𝐺) supp 𝑍)) = (𝐹 supp 𝑍))))
31 ima0 5945 . . . 4 (𝐺 “ ∅) = ∅
32 id 22 . . . . . . 7 𝑍 ∈ V → ¬ 𝑍 ∈ V)
3332intnand 491 . . . . . 6 𝑍 ∈ V → ¬ ((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V))
34 supp0prc 7833 . . . . . 6 (¬ ((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → ((𝐹𝐺) supp 𝑍) = ∅)
3533, 34syl 17 . . . . 5 𝑍 ∈ V → ((𝐹𝐺) supp 𝑍) = ∅)
3635imaeq2d 5929 . . . 4 𝑍 ∈ V → (𝐺 “ ((𝐹𝐺) supp 𝑍)) = (𝐺 “ ∅))
3732intnand 491 . . . . 5 𝑍 ∈ V → ¬ (𝐹 ∈ V ∧ 𝑍 ∈ V))
38 supp0prc 7833 . . . . 5 (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = ∅)
3937, 38syl 17 . . . 4 𝑍 ∈ V → (𝐹 supp 𝑍) = ∅)
4031, 36, 393eqtr4a 2882 . . 3 𝑍 ∈ V → (𝐺 “ ((𝐹𝐺) supp 𝑍)) = (𝐹 supp 𝑍))
41402a1d 26 . 2 𝑍 ∈ V → ((𝐹𝑉𝐺𝑊) → ((Fun 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺) → (𝐺 “ ((𝐹𝐺) supp 𝑍)) = (𝐹 supp 𝑍))))
4230, 41pm2.61i 184 1 ((𝐹𝑉𝐺𝑊) → ((Fun 𝐺 ∧ (𝐹 supp 𝑍) ⊆ ran 𝐺) → (𝐺 “ ((𝐹𝐺) supp 𝑍)) = (𝐹 supp 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  Vcvv 3494  cdif 3933  wss 3936  c0 4291  {csn 4567  ccnv 5554  dom cdm 5555  ran crn 5556  cima 5558  ccom 5559  Fun wfun 6349  ontowfo 6353  (class class class)co 7156   supp csupp 7830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-fo 6361  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-supp 7831
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator