MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfac2 Structured version   Visualization version   GIF version

Theorem ablfac2 18257
Description: Choose generators for each cyclic group in ablfac 18256. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
ablfac.b 𝐵 = (Base‘𝐺)
ablfac.c 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
ablfac.1 (𝜑𝐺 ∈ Abel)
ablfac.2 (𝜑𝐵 ∈ Fin)
ablfac2.m · = (.g𝐺)
ablfac2.s 𝑆 = (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))))
Assertion
Ref Expression
ablfac2 (𝜑 → ∃𝑤 ∈ Word 𝐵(𝑆:dom 𝑤𝐶𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵))
Distinct variable groups:   𝑆,𝑟   𝑘,𝑛,𝑟,𝑤,𝐵   · ,𝑘,𝑤   𝐶,𝑘,𝑛,𝑤   𝜑,𝑘,𝑛,𝑤   𝑘,𝐺,𝑛,𝑟,𝑤
Allowed substitution hints:   𝜑(𝑟)   𝐶(𝑟)   𝑆(𝑤,𝑘,𝑛)   · (𝑛,𝑟)

Proof of Theorem ablfac2
Dummy variables 𝑠 𝑥 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wrdf 13111 . . . . . . . 8 (𝑠 ∈ Word 𝐶𝑠:(0..^(#‘𝑠))⟶𝐶)
21ad2antlr 758 . . . . . . 7 (((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → 𝑠:(0..^(#‘𝑠))⟶𝐶)
3 fdm 5950 . . . . . . 7 (𝑠:(0..^(#‘𝑠))⟶𝐶 → dom 𝑠 = (0..^(#‘𝑠)))
42, 3syl 17 . . . . . 6 (((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → dom 𝑠 = (0..^(#‘𝑠)))
5 fzofi 12590 . . . . . 6 (0..^(#‘𝑠)) ∈ Fin
64, 5syl6eqel 2695 . . . . 5 (((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → dom 𝑠 ∈ Fin)
74feq2d 5930 . . . . . . . . . . 11 (((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → (𝑠:dom 𝑠𝐶𝑠:(0..^(#‘𝑠))⟶𝐶))
82, 7mpbird 245 . . . . . . . . . 10 (((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → 𝑠:dom 𝑠𝐶)
98ffvelrnda 6252 . . . . . . . . 9 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → (𝑠𝑘) ∈ 𝐶)
10 oveq2 6535 . . . . . . . . . . . 12 (𝑟 = (𝑠𝑘) → (𝐺s 𝑟) = (𝐺s (𝑠𝑘)))
1110eleq1d 2671 . . . . . . . . . . 11 (𝑟 = (𝑠𝑘) → ((𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp ) ↔ (𝐺s (𝑠𝑘)) ∈ (CycGrp ∩ ran pGrp )))
12 ablfac.c . . . . . . . . . . 11 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
1311, 12elrab2 3332 . . . . . . . . . 10 ((𝑠𝑘) ∈ 𝐶 ↔ ((𝑠𝑘) ∈ (SubGrp‘𝐺) ∧ (𝐺s (𝑠𝑘)) ∈ (CycGrp ∩ ran pGrp )))
1413simplbi 474 . . . . . . . . 9 ((𝑠𝑘) ∈ 𝐶 → (𝑠𝑘) ∈ (SubGrp‘𝐺))
159, 14syl 17 . . . . . . . 8 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → (𝑠𝑘) ∈ (SubGrp‘𝐺))
16 ablfac.b . . . . . . . . 9 𝐵 = (Base‘𝐺)
1716subgss 17364 . . . . . . . 8 ((𝑠𝑘) ∈ (SubGrp‘𝐺) → (𝑠𝑘) ⊆ 𝐵)
1815, 17syl 17 . . . . . . 7 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → (𝑠𝑘) ⊆ 𝐵)
19 inss1 3794 . . . . . . . . . . 11 (CycGrp ∩ ran pGrp ) ⊆ CycGrp
2013simprbi 478 . . . . . . . . . . . 12 ((𝑠𝑘) ∈ 𝐶 → (𝐺s (𝑠𝑘)) ∈ (CycGrp ∩ ran pGrp ))
219, 20syl 17 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → (𝐺s (𝑠𝑘)) ∈ (CycGrp ∩ ran pGrp ))
2219, 21sseldi 3565 . . . . . . . . . 10 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → (𝐺s (𝑠𝑘)) ∈ CycGrp)
23 eqid 2609 . . . . . . . . . . . 12 (Base‘(𝐺s (𝑠𝑘))) = (Base‘(𝐺s (𝑠𝑘)))
24 eqid 2609 . . . . . . . . . . . 12 (.g‘(𝐺s (𝑠𝑘))) = (.g‘(𝐺s (𝑠𝑘)))
2523, 24iscyg 18050 . . . . . . . . . . 11 ((𝐺s (𝑠𝑘)) ∈ CycGrp ↔ ((𝐺s (𝑠𝑘)) ∈ Grp ∧ ∃𝑥 ∈ (Base‘(𝐺s (𝑠𝑘)))ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺s (𝑠𝑘)))𝑥)) = (Base‘(𝐺s (𝑠𝑘)))))
2625simprbi 478 . . . . . . . . . 10 ((𝐺s (𝑠𝑘)) ∈ CycGrp → ∃𝑥 ∈ (Base‘(𝐺s (𝑠𝑘)))ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺s (𝑠𝑘)))𝑥)) = (Base‘(𝐺s (𝑠𝑘))))
2722, 26syl 17 . . . . . . . . 9 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → ∃𝑥 ∈ (Base‘(𝐺s (𝑠𝑘)))ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺s (𝑠𝑘)))𝑥)) = (Base‘(𝐺s (𝑠𝑘))))
28 eqid 2609 . . . . . . . . . . . 12 (𝐺s (𝑠𝑘)) = (𝐺s (𝑠𝑘))
2928subgbas 17367 . . . . . . . . . . 11 ((𝑠𝑘) ∈ (SubGrp‘𝐺) → (𝑠𝑘) = (Base‘(𝐺s (𝑠𝑘))))
3015, 29syl 17 . . . . . . . . . 10 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → (𝑠𝑘) = (Base‘(𝐺s (𝑠𝑘))))
3130rexeqdv 3121 . . . . . . . . 9 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → (∃𝑥 ∈ (𝑠𝑘)ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺s (𝑠𝑘)))𝑥)) = (Base‘(𝐺s (𝑠𝑘))) ↔ ∃𝑥 ∈ (Base‘(𝐺s (𝑠𝑘)))ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺s (𝑠𝑘)))𝑥)) = (Base‘(𝐺s (𝑠𝑘)))))
3227, 31mpbird 245 . . . . . . . 8 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → ∃𝑥 ∈ (𝑠𝑘)ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺s (𝑠𝑘)))𝑥)) = (Base‘(𝐺s (𝑠𝑘))))
3315ad2antrr 757 . . . . . . . . . . . . 13 ((((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠𝑘)) ∧ 𝑛 ∈ ℤ) → (𝑠𝑘) ∈ (SubGrp‘𝐺))
34 simpr 475 . . . . . . . . . . . . 13 ((((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠𝑘)) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
35 simplr 787 . . . . . . . . . . . . 13 ((((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠𝑘)) ∧ 𝑛 ∈ ℤ) → 𝑥 ∈ (𝑠𝑘))
36 ablfac2.m . . . . . . . . . . . . . 14 · = (.g𝐺)
3736, 28, 24subgmulg 17377 . . . . . . . . . . . . 13 (((𝑠𝑘) ∈ (SubGrp‘𝐺) ∧ 𝑛 ∈ ℤ ∧ 𝑥 ∈ (𝑠𝑘)) → (𝑛 · 𝑥) = (𝑛(.g‘(𝐺s (𝑠𝑘)))𝑥))
3833, 34, 35, 37syl3anc 1317 . . . . . . . . . . . 12 ((((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠𝑘)) ∧ 𝑛 ∈ ℤ) → (𝑛 · 𝑥) = (𝑛(.g‘(𝐺s (𝑠𝑘)))𝑥))
3938mpteq2dva 4666 . . . . . . . . . . 11 (((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠𝑘)) → (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺s (𝑠𝑘)))𝑥)))
4039rneqd 5261 . . . . . . . . . 10 (((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠𝑘)) → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺s (𝑠𝑘)))𝑥)))
4130adantr 479 . . . . . . . . . 10 (((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠𝑘)) → (𝑠𝑘) = (Base‘(𝐺s (𝑠𝑘))))
4240, 41eqeq12d 2624 . . . . . . . . 9 (((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠𝑘)) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠𝑘) ↔ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺s (𝑠𝑘)))𝑥)) = (Base‘(𝐺s (𝑠𝑘)))))
4342rexbidva 3030 . . . . . . . 8 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → (∃𝑥 ∈ (𝑠𝑘)ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠𝑘) ↔ ∃𝑥 ∈ (𝑠𝑘)ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺s (𝑠𝑘)))𝑥)) = (Base‘(𝐺s (𝑠𝑘)))))
4432, 43mpbird 245 . . . . . . 7 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → ∃𝑥 ∈ (𝑠𝑘)ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠𝑘))
45 ssrexv 3629 . . . . . . 7 ((𝑠𝑘) ⊆ 𝐵 → (∃𝑥 ∈ (𝑠𝑘)ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠𝑘) → ∃𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠𝑘)))
4618, 44, 45sylc 62 . . . . . 6 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → ∃𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠𝑘))
4746ralrimiva 2948 . . . . 5 (((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → ∀𝑘 ∈ dom 𝑠𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠𝑘))
48 oveq2 6535 . . . . . . . . 9 (𝑥 = (𝑤𝑘) → (𝑛 · 𝑥) = (𝑛 · (𝑤𝑘)))
4948mpteq2dv 4667 . . . . . . . 8 (𝑥 = (𝑤𝑘) → (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))))
5049rneqd 5261 . . . . . . 7 (𝑥 = (𝑤𝑘) → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))))
5150eqeq1d 2611 . . . . . 6 (𝑥 = (𝑤𝑘) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠𝑘) ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘)))
5251ac6sfi 8066 . . . . 5 ((dom 𝑠 ∈ Fin ∧ ∀𝑘 ∈ dom 𝑠𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠𝑘)) → ∃𝑤(𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘)))
536, 47, 52syl2anc 690 . . . 4 (((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → ∃𝑤(𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘)))
54 simprl 789 . . . . . . . . 9 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → 𝑤:dom 𝑠𝐵)
554adantr 479 . . . . . . . . . 10 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → dom 𝑠 = (0..^(#‘𝑠)))
5655feq2d 5930 . . . . . . . . 9 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → (𝑤:dom 𝑠𝐵𝑤:(0..^(#‘𝑠))⟶𝐵))
5754, 56mpbid 220 . . . . . . . 8 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → 𝑤:(0..^(#‘𝑠))⟶𝐵)
58 iswrdi 13110 . . . . . . . 8 (𝑤:(0..^(#‘𝑠))⟶𝐵𝑤 ∈ Word 𝐵)
5957, 58syl 17 . . . . . . 7 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → 𝑤 ∈ Word 𝐵)
60 fdm 5950 . . . . . . . . . . . . . 14 (𝑤:(0..^(#‘𝑠))⟶𝐵 → dom 𝑤 = (0..^(#‘𝑠)))
6157, 60syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → dom 𝑤 = (0..^(#‘𝑠)))
6261, 55eqtr4d 2646 . . . . . . . . . . . 12 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → dom 𝑤 = dom 𝑠)
6362eleq2d 2672 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → (𝑗 ∈ dom 𝑤𝑗 ∈ dom 𝑠))
6463biimpa 499 . . . . . . . . . 10 (((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) ∧ 𝑗 ∈ dom 𝑤) → 𝑗 ∈ dom 𝑠)
65 simprr 791 . . . . . . . . . . . 12 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))
66 simpl 471 . . . . . . . . . . . . . . . . . 18 ((𝑘 = 𝑗𝑛 ∈ ℤ) → 𝑘 = 𝑗)
6766fveq2d 6092 . . . . . . . . . . . . . . . . 17 ((𝑘 = 𝑗𝑛 ∈ ℤ) → (𝑤𝑘) = (𝑤𝑗))
6867oveq2d 6543 . . . . . . . . . . . . . . . 16 ((𝑘 = 𝑗𝑛 ∈ ℤ) → (𝑛 · (𝑤𝑘)) = (𝑛 · (𝑤𝑗)))
6968mpteq2dva 4666 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑗))))
7069rneqd 5261 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑗))))
71 fveq2 6088 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → (𝑠𝑘) = (𝑠𝑗))
7270, 71eqeq12d 2624 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘) ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑗))) = (𝑠𝑗)))
7372rspccva 3280 . . . . . . . . . . . 12 ((∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘) ∧ 𝑗 ∈ dom 𝑠) → ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑗))) = (𝑠𝑗))
7465, 73sylan 486 . . . . . . . . . . 11 (((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) ∧ 𝑗 ∈ dom 𝑠) → ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑗))) = (𝑠𝑗))
758adantr 479 . . . . . . . . . . . 12 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → 𝑠:dom 𝑠𝐶)
7675ffvelrnda 6252 . . . . . . . . . . 11 (((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) ∧ 𝑗 ∈ dom 𝑠) → (𝑠𝑗) ∈ 𝐶)
7774, 76eqeltrd 2687 . . . . . . . . . 10 (((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) ∧ 𝑗 ∈ dom 𝑠) → ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑗))) ∈ 𝐶)
7864, 77syldan 485 . . . . . . . . 9 (((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) ∧ 𝑗 ∈ dom 𝑤) → ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑗))) ∈ 𝐶)
79 ablfac2.s . . . . . . . . . 10 𝑆 = (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))))
80 fveq2 6088 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → (𝑤𝑘) = (𝑤𝑗))
8180oveq2d 6543 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝑛 · (𝑤𝑘)) = (𝑛 · (𝑤𝑗)))
8281mpteq2dv 4667 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑗))))
8382rneqd 5261 . . . . . . . . . . 11 (𝑘 = 𝑗 → ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑗))))
8483cbvmptv 4672 . . . . . . . . . 10 (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘)))) = (𝑗 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑗))))
8579, 84eqtri 2631 . . . . . . . . 9 𝑆 = (𝑗 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑗))))
8678, 85fmptd 6277 . . . . . . . 8 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → 𝑆:dom 𝑤𝐶)
87 simprl 789 . . . . . . . . . 10 (((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → 𝐺dom DProd 𝑠)
8887adantr 479 . . . . . . . . 9 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → 𝐺dom DProd 𝑠)
8962raleqdv 3120 . . . . . . . . . . . . 13 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → (∀𝑘 ∈ dom 𝑤ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘) ↔ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘)))
9065, 89mpbird 245 . . . . . . . . . . . 12 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → ∀𝑘 ∈ dom 𝑤ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))
91 mpteq12 4658 . . . . . . . . . . . 12 ((dom 𝑤 = dom 𝑠 ∧ ∀𝑘 ∈ dom 𝑤ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘)) → (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘)))) = (𝑘 ∈ dom 𝑠 ↦ (𝑠𝑘)))
9262, 90, 91syl2anc 690 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘)))) = (𝑘 ∈ dom 𝑠 ↦ (𝑠𝑘)))
9379, 92syl5eq 2655 . . . . . . . . . 10 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → 𝑆 = (𝑘 ∈ dom 𝑠 ↦ (𝑠𝑘)))
94 dprdf 18174 . . . . . . . . . . . 12 (𝐺dom DProd 𝑠𝑠:dom 𝑠⟶(SubGrp‘𝐺))
9588, 94syl 17 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → 𝑠:dom 𝑠⟶(SubGrp‘𝐺))
9695feqmptd 6144 . . . . . . . . . 10 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → 𝑠 = (𝑘 ∈ dom 𝑠 ↦ (𝑠𝑘)))
9793, 96eqtr4d 2646 . . . . . . . . 9 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → 𝑆 = 𝑠)
9888, 97breqtrrd 4605 . . . . . . . 8 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → 𝐺dom DProd 𝑆)
9997oveq2d 6543 . . . . . . . . 9 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → (𝐺 DProd 𝑆) = (𝐺 DProd 𝑠))
100 simplrr 796 . . . . . . . . 9 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → (𝐺 DProd 𝑠) = 𝐵)
10199, 100eqtrd 2643 . . . . . . . 8 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → (𝐺 DProd 𝑆) = 𝐵)
10286, 98, 1013jca 1234 . . . . . . 7 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → (𝑆:dom 𝑤𝐶𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵))
10359, 102jca 552 . . . . . 6 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → (𝑤 ∈ Word 𝐵 ∧ (𝑆:dom 𝑤𝐶𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵)))
104103ex 448 . . . . 5 (((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → ((𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘)) → (𝑤 ∈ Word 𝐵 ∧ (𝑆:dom 𝑤𝐶𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵))))
105104eximdv 1832 . . . 4 (((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → (∃𝑤(𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘)) → ∃𝑤(𝑤 ∈ Word 𝐵 ∧ (𝑆:dom 𝑤𝐶𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵))))
10653, 105mpd 15 . . 3 (((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → ∃𝑤(𝑤 ∈ Word 𝐵 ∧ (𝑆:dom 𝑤𝐶𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵)))
107 df-rex 2901 . . 3 (∃𝑤 ∈ Word 𝐵(𝑆:dom 𝑤𝐶𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵) ↔ ∃𝑤(𝑤 ∈ Word 𝐵 ∧ (𝑆:dom 𝑤𝐶𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵)))
108106, 107sylibr 222 . 2 (((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → ∃𝑤 ∈ Word 𝐵(𝑆:dom 𝑤𝐶𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵))
109 ablfac.1 . . 3 (𝜑𝐺 ∈ Abel)
110 ablfac.2 . . 3 (𝜑𝐵 ∈ Fin)
11116, 12, 109, 110ablfac 18256 . 2 (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵))
112108, 111r19.29a 3059 1 (𝜑 → ∃𝑤 ∈ Word 𝐵(𝑆:dom 𝑤𝐶𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1030   = wceq 1474  wex 1694  wcel 1976  wral 2895  wrex 2896  {crab 2899  cin 3538  wss 3539   class class class wbr 4577  cmpt 4637  dom cdm 5028  ran crn 5029  wf 5786  cfv 5790  (class class class)co 6527  Fincfn 7818  0cc0 9792  cz 11210  ..^cfzo 12289  #chash 12934  Word cword 13092  Basecbs 15641  s cress 15642  Grpcgrp 17191  .gcmg 17309  SubGrpcsubg 17357   pGrp cpgp 17715  Abelcabl 17963  CycGrpccyg 18048   DProd cdprd 18161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-inf2 8398  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-iin 4452  df-disj 4548  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6772  df-rpss 6812  df-om 6935  df-1st 7036  df-2nd 7037  df-supp 7160  df-tpos 7216  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-2o 7425  df-oadd 7428  df-omul 7429  df-er 7606  df-ec 7608  df-qs 7612  df-map 7723  df-pm 7724  df-ixp 7772  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-fsupp 8136  df-sup 8208  df-inf 8209  df-oi 8275  df-card 8625  df-acn 8628  df-cda 8850  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-n0 11140  df-z 11211  df-uz 11520  df-q 11621  df-rp 11665  df-fz 12153  df-fzo 12290  df-fl 12410  df-mod 12486  df-seq 12619  df-exp 12678  df-fac 12878  df-bc 12907  df-hash 12935  df-word 13100  df-concat 13102  df-s1 13103  df-cj 13633  df-re 13634  df-im 13635  df-sqrt 13769  df-abs 13770  df-clim 14013  df-sum 14211  df-dvds 14768  df-gcd 15001  df-prm 15170  df-pc 15326  df-ndx 15644  df-slot 15645  df-base 15646  df-sets 15647  df-ress 15648  df-plusg 15727  df-0g 15871  df-gsum 15872  df-mre 16015  df-mrc 16016  df-acs 16018  df-mgm 17011  df-sgrp 17053  df-mnd 17064  df-mhm 17104  df-submnd 17105  df-grp 17194  df-minusg 17195  df-sbg 17196  df-mulg 17310  df-subg 17360  df-eqg 17362  df-ghm 17427  df-gim 17470  df-ga 17492  df-cntz 17519  df-oppg 17545  df-od 17717  df-gex 17718  df-pgp 17719  df-lsm 17820  df-pj1 17821  df-cmn 17964  df-abl 17965  df-cyg 18049  df-dprd 18163
This theorem is referenced by:  dchrpt  24709
  Copyright terms: Public domain W3C validator