MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfcls2 Structured version   Visualization version   GIF version

Theorem isfcls2 22621
Description: A cluster point of a filter. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
isfcls2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
Distinct variable groups:   𝐴,𝑠   𝐹,𝑠   𝐽,𝑠   𝑋,𝑠

Proof of Theorem isfcls2
StepHypRef Expression
1 topontop 21521 . 2 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
2 toponuni 21522 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
32fveq2d 6674 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (Fil‘𝑋) = (Fil‘ 𝐽))
43eleq2d 2898 . . 3 (𝐽 ∈ (TopOn‘𝑋) → (𝐹 ∈ (Fil‘𝑋) ↔ 𝐹 ∈ (Fil‘ 𝐽)))
54biimpa 479 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → 𝐹 ∈ (Fil‘ 𝐽))
6 eqid 2821 . . . . 5 𝐽 = 𝐽
76isfcls 22617 . . . 4 (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘ 𝐽) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
8 df-3an 1085 . . . 4 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘ 𝐽) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)) ↔ ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘ 𝐽)) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
97, 8bitri 277 . . 3 (𝐴 ∈ (𝐽 fClus 𝐹) ↔ ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘ 𝐽)) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
109baib 538 . 2 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘ 𝐽)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
111, 5, 10syl2an2r 683 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wcel 2114  wral 3138   cuni 4838  cfv 6355  (class class class)co 7156  Topctop 21501  TopOnctopon 21518  clsccl 21626  Filcfil 22453   fClus cfcls 22544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-int 4877  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-fbas 20542  df-topon 21519  df-fil 22454  df-fcls 22549
This theorem is referenced by:  fclsopn  22622  fclsss2  22631
  Copyright terms: Public domain W3C validator