Step | Hyp | Ref
| Expression |
1 | | llytop 21475 |
. . . 4
⊢ (𝐽 ∈ Locally 𝐴 → 𝐽 ∈ Top) |
2 | 1 | adantl 473 |
. . 3
⊢ ((𝜑 ∧ 𝐽 ∈ Locally 𝐴) → 𝐽 ∈ Top) |
3 | | simplr 809 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐽 ∈ Locally 𝐴) ∧ 𝑦 ∈ 𝑋) → 𝐽 ∈ Locally 𝐴) |
4 | 2 | adantr 472 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐽 ∈ Locally 𝐴) ∧ 𝑦 ∈ 𝑋) → 𝐽 ∈ Top) |
5 | | islly2.2 |
. . . . . . . 8
⊢ 𝑋 = ∪
𝐽 |
6 | 5 | topopn 20911 |
. . . . . . 7
⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
7 | 4, 6 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐽 ∈ Locally 𝐴) ∧ 𝑦 ∈ 𝑋) → 𝑋 ∈ 𝐽) |
8 | | simpr 479 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐽 ∈ Locally 𝐴) ∧ 𝑦 ∈ 𝑋) → 𝑦 ∈ 𝑋) |
9 | | llyi 21477 |
. . . . . 6
⊢ ((𝐽 ∈ Locally 𝐴 ∧ 𝑋 ∈ 𝐽 ∧ 𝑦 ∈ 𝑋) → ∃𝑢 ∈ 𝐽 (𝑢 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴)) |
10 | 3, 7, 8, 9 | syl3anc 1477 |
. . . . 5
⊢ (((𝜑 ∧ 𝐽 ∈ Locally 𝐴) ∧ 𝑦 ∈ 𝑋) → ∃𝑢 ∈ 𝐽 (𝑢 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴)) |
11 | | 3simpc 1147 |
. . . . . 6
⊢ ((𝑢 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴) → (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴)) |
12 | 11 | reximi 3147 |
. . . . 5
⊢
(∃𝑢 ∈
𝐽 (𝑢 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴) → ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴)) |
13 | 10, 12 | syl 17 |
. . . 4
⊢ (((𝜑 ∧ 𝐽 ∈ Locally 𝐴) ∧ 𝑦 ∈ 𝑋) → ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴)) |
14 | 13 | ralrimiva 3102 |
. . 3
⊢ ((𝜑 ∧ 𝐽 ∈ Locally 𝐴) → ∀𝑦 ∈ 𝑋 ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴)) |
15 | 2, 14 | jca 555 |
. 2
⊢ ((𝜑 ∧ 𝐽 ∈ Locally 𝐴) → (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝑋 ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) |
16 | | simprl 811 |
. . 3
⊢ ((𝜑 ∧ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝑋 ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → 𝐽 ∈ Top) |
17 | | elssuni 4617 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝐽 → 𝑧 ⊆ ∪ 𝐽) |
18 | 17, 5 | syl6sseqr 3791 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝐽 → 𝑧 ⊆ 𝑋) |
19 | 18 | adantl 473 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐽 ∈ Top) ∧ 𝑧 ∈ 𝐽) → 𝑧 ⊆ 𝑋) |
20 | | ssralv 3805 |
. . . . . . 7
⊢ (𝑧 ⊆ 𝑋 → (∀𝑦 ∈ 𝑋 ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴) → ∀𝑦 ∈ 𝑧 ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) |
21 | 19, 20 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐽 ∈ Top) ∧ 𝑧 ∈ 𝐽) → (∀𝑦 ∈ 𝑋 ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴) → ∀𝑦 ∈ 𝑧 ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) |
22 | | simpllr 817 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → 𝐽 ∈ Top) |
23 | | simplrl 819 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → 𝑧 ∈ 𝐽) |
24 | | simprl 811 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → 𝑢 ∈ 𝐽) |
25 | | inopn 20904 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ 𝑧 ∈ 𝐽 ∧ 𝑢 ∈ 𝐽) → (𝑧 ∩ 𝑢) ∈ 𝐽) |
26 | 22, 23, 24, 25 | syl3anc 1477 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → (𝑧 ∩ 𝑢) ∈ 𝐽) |
27 | | inss1 3974 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∩ 𝑢) ⊆ 𝑧 |
28 | | vex 3341 |
. . . . . . . . . . . . . 14
⊢ 𝑧 ∈ V |
29 | 28 | elpw2 4975 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∩ 𝑢) ∈ 𝒫 𝑧 ↔ (𝑧 ∩ 𝑢) ⊆ 𝑧) |
30 | 27, 29 | mpbir 221 |
. . . . . . . . . . . 12
⊢ (𝑧 ∩ 𝑢) ∈ 𝒫 𝑧 |
31 | 30 | a1i 11 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → (𝑧 ∩ 𝑢) ∈ 𝒫 𝑧) |
32 | 26, 31 | elind 3939 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → (𝑧 ∩ 𝑢) ∈ (𝐽 ∩ 𝒫 𝑧)) |
33 | | simplrr 820 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → 𝑦 ∈ 𝑧) |
34 | | simprrl 823 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → 𝑦 ∈ 𝑢) |
35 | 33, 34 | elind 3939 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → 𝑦 ∈ (𝑧 ∩ 𝑢)) |
36 | | inss2 3975 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∩ 𝑢) ⊆ 𝑢 |
37 | 36 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → (𝑧 ∩ 𝑢) ⊆ 𝑢) |
38 | | restabs 21169 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ (𝑧 ∩ 𝑢) ⊆ 𝑢 ∧ 𝑢 ∈ 𝐽) → ((𝐽 ↾t 𝑢) ↾t (𝑧 ∩ 𝑢)) = (𝐽 ↾t (𝑧 ∩ 𝑢))) |
39 | 22, 37, 24, 38 | syl3anc 1477 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → ((𝐽 ↾t 𝑢) ↾t (𝑧 ∩ 𝑢)) = (𝐽 ↾t (𝑧 ∩ 𝑢))) |
40 | | elrestr 16289 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ 𝑢 ∈ 𝐽 ∧ 𝑧 ∈ 𝐽) → (𝑧 ∩ 𝑢) ∈ (𝐽 ↾t 𝑢)) |
41 | 22, 24, 23, 40 | syl3anc 1477 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → (𝑧 ∩ 𝑢) ∈ (𝐽 ↾t 𝑢)) |
42 | | simprrr 824 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → (𝐽 ↾t 𝑢) ∈ 𝐴) |
43 | | restlly.1 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → (𝑗 ↾t 𝑥) ∈ 𝐴) |
44 | 43 | ralrimivva 3107 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑗 ∈ 𝐴 ∀𝑥 ∈ 𝑗 (𝑗 ↾t 𝑥) ∈ 𝐴) |
45 | 44 | ad3antrrr 768 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → ∀𝑗 ∈ 𝐴 ∀𝑥 ∈ 𝑗 (𝑗 ↾t 𝑥) ∈ 𝐴) |
46 | | oveq1 6818 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = (𝐽 ↾t 𝑢) → (𝑗 ↾t 𝑥) = ((𝐽 ↾t 𝑢) ↾t 𝑥)) |
47 | 46 | eleq1d 2822 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = (𝐽 ↾t 𝑢) → ((𝑗 ↾t 𝑥) ∈ 𝐴 ↔ ((𝐽 ↾t 𝑢) ↾t 𝑥) ∈ 𝐴)) |
48 | 47 | raleqbi1dv 3283 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = (𝐽 ↾t 𝑢) → (∀𝑥 ∈ 𝑗 (𝑗 ↾t 𝑥) ∈ 𝐴 ↔ ∀𝑥 ∈ (𝐽 ↾t 𝑢)((𝐽 ↾t 𝑢) ↾t 𝑥) ∈ 𝐴)) |
49 | 48 | rspcv 3443 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ↾t 𝑢) ∈ 𝐴 → (∀𝑗 ∈ 𝐴 ∀𝑥 ∈ 𝑗 (𝑗 ↾t 𝑥) ∈ 𝐴 → ∀𝑥 ∈ (𝐽 ↾t 𝑢)((𝐽 ↾t 𝑢) ↾t 𝑥) ∈ 𝐴)) |
50 | 42, 45, 49 | sylc 65 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → ∀𝑥 ∈ (𝐽 ↾t 𝑢)((𝐽 ↾t 𝑢) ↾t 𝑥) ∈ 𝐴) |
51 | | oveq2 6819 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑧 ∩ 𝑢) → ((𝐽 ↾t 𝑢) ↾t 𝑥) = ((𝐽 ↾t 𝑢) ↾t (𝑧 ∩ 𝑢))) |
52 | 51 | eleq1d 2822 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝑧 ∩ 𝑢) → (((𝐽 ↾t 𝑢) ↾t 𝑥) ∈ 𝐴 ↔ ((𝐽 ↾t 𝑢) ↾t (𝑧 ∩ 𝑢)) ∈ 𝐴)) |
53 | 52 | rspcv 3443 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∩ 𝑢) ∈ (𝐽 ↾t 𝑢) → (∀𝑥 ∈ (𝐽 ↾t 𝑢)((𝐽 ↾t 𝑢) ↾t 𝑥) ∈ 𝐴 → ((𝐽 ↾t 𝑢) ↾t (𝑧 ∩ 𝑢)) ∈ 𝐴)) |
54 | 41, 50, 53 | sylc 65 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → ((𝐽 ↾t 𝑢) ↾t (𝑧 ∩ 𝑢)) ∈ 𝐴) |
55 | 39, 54 | eqeltrrd 2838 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → (𝐽 ↾t (𝑧 ∩ 𝑢)) ∈ 𝐴) |
56 | | eleq2 2826 |
. . . . . . . . . . . 12
⊢ (𝑣 = (𝑧 ∩ 𝑢) → (𝑦 ∈ 𝑣 ↔ 𝑦 ∈ (𝑧 ∩ 𝑢))) |
57 | | oveq2 6819 |
. . . . . . . . . . . . 13
⊢ (𝑣 = (𝑧 ∩ 𝑢) → (𝐽 ↾t 𝑣) = (𝐽 ↾t (𝑧 ∩ 𝑢))) |
58 | 57 | eleq1d 2822 |
. . . . . . . . . . . 12
⊢ (𝑣 = (𝑧 ∩ 𝑢) → ((𝐽 ↾t 𝑣) ∈ 𝐴 ↔ (𝐽 ↾t (𝑧 ∩ 𝑢)) ∈ 𝐴)) |
59 | 56, 58 | anbi12d 749 |
. . . . . . . . . . 11
⊢ (𝑣 = (𝑧 ∩ 𝑢) → ((𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴) ↔ (𝑦 ∈ (𝑧 ∩ 𝑢) ∧ (𝐽 ↾t (𝑧 ∩ 𝑢)) ∈ 𝐴))) |
60 | 59 | rspcev 3447 |
. . . . . . . . . 10
⊢ (((𝑧 ∩ 𝑢) ∈ (𝐽 ∩ 𝒫 𝑧) ∧ (𝑦 ∈ (𝑧 ∩ 𝑢) ∧ (𝐽 ↾t (𝑧 ∩ 𝑢)) ∈ 𝐴)) → ∃𝑣 ∈ (𝐽 ∩ 𝒫 𝑧)(𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴)) |
61 | 32, 35, 55, 60 | syl12anc 1475 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → ∃𝑣 ∈ (𝐽 ∩ 𝒫 𝑧)(𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴)) |
62 | 61 | rexlimdvaa 3168 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐽 ∈ Top) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) → (∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴) → ∃𝑣 ∈ (𝐽 ∩ 𝒫 𝑧)(𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴))) |
63 | 62 | anassrs 683 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐽 ∈ Top) ∧ 𝑧 ∈ 𝐽) ∧ 𝑦 ∈ 𝑧) → (∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴) → ∃𝑣 ∈ (𝐽 ∩ 𝒫 𝑧)(𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴))) |
64 | 63 | ralimdva 3098 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐽 ∈ Top) ∧ 𝑧 ∈ 𝐽) → (∀𝑦 ∈ 𝑧 ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴) → ∀𝑦 ∈ 𝑧 ∃𝑣 ∈ (𝐽 ∩ 𝒫 𝑧)(𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴))) |
65 | 21, 64 | syld 47 |
. . . . 5
⊢ (((𝜑 ∧ 𝐽 ∈ Top) ∧ 𝑧 ∈ 𝐽) → (∀𝑦 ∈ 𝑋 ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴) → ∀𝑦 ∈ 𝑧 ∃𝑣 ∈ (𝐽 ∩ 𝒫 𝑧)(𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴))) |
66 | 65 | ralrimdva 3105 |
. . . 4
⊢ ((𝜑 ∧ 𝐽 ∈ Top) → (∀𝑦 ∈ 𝑋 ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴) → ∀𝑧 ∈ 𝐽 ∀𝑦 ∈ 𝑧 ∃𝑣 ∈ (𝐽 ∩ 𝒫 𝑧)(𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴))) |
67 | 66 | impr 650 |
. . 3
⊢ ((𝜑 ∧ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝑋 ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → ∀𝑧 ∈ 𝐽 ∀𝑦 ∈ 𝑧 ∃𝑣 ∈ (𝐽 ∩ 𝒫 𝑧)(𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴)) |
68 | | islly 21471 |
. . 3
⊢ (𝐽 ∈ Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑧 ∈ 𝐽 ∀𝑦 ∈ 𝑧 ∃𝑣 ∈ (𝐽 ∩ 𝒫 𝑧)(𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴))) |
69 | 16, 67, 68 | sylanbrc 701 |
. 2
⊢ ((𝜑 ∧ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝑋 ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴))) → 𝐽 ∈ Locally 𝐴) |
70 | 15, 69 | impbida 913 |
1
⊢ (𝜑 → (𝐽 ∈ Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝑋 ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ (𝐽 ↾t 𝑢) ∈ 𝐴)))) |