MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iss Structured version   Visualization version   GIF version

Theorem iss 5411
Description: A subclass of the identity function is the identity function restricted to its domain. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
iss (𝐴 ⊆ I ↔ 𝐴 = ( I ↾ dom 𝐴))

Proof of Theorem iss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3581 . . . . . . 7 (𝐴 ⊆ I → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ I ))
2 vex 3192 . . . . . . . . 9 𝑥 ∈ V
3 vex 3192 . . . . . . . . 9 𝑦 ∈ V
42, 3opeldm 5293 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥 ∈ dom 𝐴)
54a1i 11 . . . . . . 7 (𝐴 ⊆ I → (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥 ∈ dom 𝐴))
61, 5jcad 555 . . . . . 6 (𝐴 ⊆ I → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → (⟨𝑥, 𝑦⟩ ∈ I ∧ 𝑥 ∈ dom 𝐴)))
7 df-br 4619 . . . . . . . . 9 (𝑥 I 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ I )
83ideq 5239 . . . . . . . . 9 (𝑥 I 𝑦𝑥 = 𝑦)
97, 8bitr3i 266 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ I ↔ 𝑥 = 𝑦)
102eldm2 5287 . . . . . . . . . 10 (𝑥 ∈ dom 𝐴 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐴)
11 opeq2 4376 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → ⟨𝑥, 𝑥⟩ = ⟨𝑥, 𝑦⟩)
1211eleq1d 2683 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (⟨𝑥, 𝑥⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴))
1312biimprcd 240 . . . . . . . . . . . . 13 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → (𝑥 = 𝑦 → ⟨𝑥, 𝑥⟩ ∈ 𝐴))
149, 13syl5bi 232 . . . . . . . . . . . 12 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → (⟨𝑥, 𝑦⟩ ∈ I → ⟨𝑥, 𝑥⟩ ∈ 𝐴))
151, 14sylcom 30 . . . . . . . . . . 11 (𝐴 ⊆ I → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑥⟩ ∈ 𝐴))
1615exlimdv 1858 . . . . . . . . . 10 (𝐴 ⊆ I → (∃𝑦𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑥⟩ ∈ 𝐴))
1710, 16syl5bi 232 . . . . . . . . 9 (𝐴 ⊆ I → (𝑥 ∈ dom 𝐴 → ⟨𝑥, 𝑥⟩ ∈ 𝐴))
1812imbi2d 330 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑥 ∈ dom 𝐴 → ⟨𝑥, 𝑥⟩ ∈ 𝐴) ↔ (𝑥 ∈ dom 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐴)))
1917, 18syl5ibcom 235 . . . . . . . 8 (𝐴 ⊆ I → (𝑥 = 𝑦 → (𝑥 ∈ dom 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐴)))
209, 19syl5bi 232 . . . . . . 7 (𝐴 ⊆ I → (⟨𝑥, 𝑦⟩ ∈ I → (𝑥 ∈ dom 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐴)))
2120impd 447 . . . . . 6 (𝐴 ⊆ I → ((⟨𝑥, 𝑦⟩ ∈ I ∧ 𝑥 ∈ dom 𝐴) → ⟨𝑥, 𝑦⟩ ∈ 𝐴))
226, 21impbid 202 . . . . 5 (𝐴 ⊆ I → (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ (⟨𝑥, 𝑦⟩ ∈ I ∧ 𝑥 ∈ dom 𝐴)))
233opelres 5366 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ ( I ↾ dom 𝐴) ↔ (⟨𝑥, 𝑦⟩ ∈ I ∧ 𝑥 ∈ dom 𝐴))
2422, 23syl6bbr 278 . . . 4 (𝐴 ⊆ I → (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ dom 𝐴)))
2524alrimivv 1853 . . 3 (𝐴 ⊆ I → ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ dom 𝐴)))
26 reli 5214 . . . . 5 Rel I
27 relss 5172 . . . . 5 (𝐴 ⊆ I → (Rel I → Rel 𝐴))
2826, 27mpi 20 . . . 4 (𝐴 ⊆ I → Rel 𝐴)
29 relres 5390 . . . 4 Rel ( I ↾ dom 𝐴)
30 eqrel 5175 . . . 4 ((Rel 𝐴 ∧ Rel ( I ↾ dom 𝐴)) → (𝐴 = ( I ↾ dom 𝐴) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ dom 𝐴))))
3128, 29, 30sylancl 693 . . 3 (𝐴 ⊆ I → (𝐴 = ( I ↾ dom 𝐴) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ dom 𝐴))))
3225, 31mpbird 247 . 2 (𝐴 ⊆ I → 𝐴 = ( I ↾ dom 𝐴))
33 resss 5386 . . 3 ( I ↾ dom 𝐴) ⊆ I
34 sseq1 3610 . . 3 (𝐴 = ( I ↾ dom 𝐴) → (𝐴 ⊆ I ↔ ( I ↾ dom 𝐴) ⊆ I ))
3533, 34mpbiri 248 . 2 (𝐴 = ( I ↾ dom 𝐴) → 𝐴 ⊆ I )
3632, 35impbii 199 1 (𝐴 ⊆ I ↔ 𝐴 = ( I ↾ dom 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wal 1478   = wceq 1480  wex 1701  wcel 1987  wss 3559  cop 4159   class class class wbr 4618   I cid 4989  dom cdm 5079  cres 5081  Rel wrel 5084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pr 4872
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-br 4619  df-opab 4679  df-id 4994  df-xp 5085  df-rel 5086  df-dm 5089  df-res 5091
This theorem is referenced by:  funcocnv2  6123  trust  21952
  Copyright terms: Public domain W3C validator