![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ist1-5 | Structured version Visualization version GIF version |
Description: A topological space is T1 iff it is both T0 and R0. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
ist1-5 | ⊢ (𝐽 ∈ Fre ↔ (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ Fre)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | t1t0 21200 | . 2 ⊢ (𝐽 ∈ Fre → 𝐽 ∈ Kol2) | |
2 | t1hmph 21642 | . 2 ⊢ (𝐽 ≃ (KQ‘𝐽) → (𝐽 ∈ Fre → (KQ‘𝐽) ∈ Fre)) | |
3 | t1hmph 21642 | . 2 ⊢ ((KQ‘𝐽) ≃ 𝐽 → ((KQ‘𝐽) ∈ Fre → 𝐽 ∈ Fre)) | |
4 | 1, 2, 3 | ist1-5lem 21671 | 1 ⊢ (𝐽 ∈ Fre ↔ (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ Fre)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 ∈ wcel 2030 ‘cfv 5926 Kol2ct0 21158 Frect1 21159 KQckq 21544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-1st 7210 df-2nd 7211 df-1o 7605 df-map 7901 df-topgen 16151 df-qtop 16214 df-top 20747 df-topon 20764 df-cld 20871 df-cn 21079 df-t0 21165 df-t1 21166 df-kq 21545 df-hmeo 21606 df-hmph 21607 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |