Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lflvsdi2a Structured version   Visualization version   GIF version

Theorem lflvsdi2a 36231
Description: Reverse distributive law for (right vector space) scalar product of functionals. (Contributed by NM, 21-Oct-2014.)
Hypotheses
Ref Expression
lfldi.v 𝑉 = (Base‘𝑊)
lfldi.r 𝑅 = (Scalar‘𝑊)
lfldi.k 𝐾 = (Base‘𝑅)
lfldi.p + = (+g𝑅)
lfldi.t · = (.r𝑅)
lfldi.f 𝐹 = (LFnl‘𝑊)
lfldi.w (𝜑𝑊 ∈ LMod)
lfldi.x (𝜑𝑋𝐾)
lfldi2.y (𝜑𝑌𝐾)
lfldi2.g (𝜑𝐺𝐹)
Assertion
Ref Expression
lflvsdi2a (𝜑 → (𝐺f · (𝑉 × {(𝑋 + 𝑌)})) = ((𝐺f · (𝑉 × {𝑋})) ∘f + (𝐺f · (𝑉 × {𝑌}))))

Proof of Theorem lflvsdi2a
StepHypRef Expression
1 lfldi.v . . . . . 6 𝑉 = (Base‘𝑊)
21fvexi 6684 . . . . 5 𝑉 ∈ V
32a1i 11 . . . 4 (𝜑𝑉 ∈ V)
4 lfldi.x . . . 4 (𝜑𝑋𝐾)
5 lfldi2.y . . . 4 (𝜑𝑌𝐾)
63, 4, 5ofc12 7434 . . 3 (𝜑 → ((𝑉 × {𝑋}) ∘f + (𝑉 × {𝑌})) = (𝑉 × {(𝑋 + 𝑌)}))
76oveq2d 7172 . 2 (𝜑 → (𝐺f · ((𝑉 × {𝑋}) ∘f + (𝑉 × {𝑌}))) = (𝐺f · (𝑉 × {(𝑋 + 𝑌)})))
8 lfldi.r . . 3 𝑅 = (Scalar‘𝑊)
9 lfldi.k . . 3 𝐾 = (Base‘𝑅)
10 lfldi.p . . 3 + = (+g𝑅)
11 lfldi.t . . 3 · = (.r𝑅)
12 lfldi.f . . 3 𝐹 = (LFnl‘𝑊)
13 lfldi.w . . 3 (𝜑𝑊 ∈ LMod)
14 lfldi2.g . . 3 (𝜑𝐺𝐹)
151, 8, 9, 10, 11, 12, 13, 4, 5, 14lflvsdi2 36230 . 2 (𝜑 → (𝐺f · ((𝑉 × {𝑋}) ∘f + (𝑉 × {𝑌}))) = ((𝐺f · (𝑉 × {𝑋})) ∘f + (𝐺f · (𝑉 × {𝑌}))))
167, 15eqtr3d 2858 1 (𝜑 → (𝐺f · (𝑉 × {(𝑋 + 𝑌)})) = ((𝐺f · (𝑉 × {𝑋})) ∘f + (𝐺f · (𝑉 × {𝑌}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  Vcvv 3494  {csn 4567   × cxp 5553  cfv 6355  (class class class)co 7156  f cof 7407  Basecbs 16483  +gcplusg 16565  .rcmulr 16566  Scalarcsca 16568  LModclmod 19634  LFnlclfn 36208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-map 8408  df-ring 19299  df-lmod 19636  df-lfl 36209
This theorem is referenced by:  ldualvsdi2  36295
  Copyright terms: Public domain W3C validator