Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualvsdi2 Structured version   Visualization version   GIF version

Theorem ldualvsdi2 36295
Description: Reverse distributive law for scalar product operation, using operations from the dual space. (Contributed by NM, 21-Oct-2014.)
Hypotheses
Ref Expression
ldualvsdi2.f 𝐹 = (LFnl‘𝑊)
ldualvsdi2.r 𝑅 = (Scalar‘𝑊)
ldualvsdi2.a + = (+g𝑅)
ldualvsdi2.k 𝐾 = (Base‘𝑅)
ldualvsdi2.d 𝐷 = (LDual‘𝑊)
ldualvsdi2.p = (+g𝐷)
ldualvsdi2.s · = ( ·𝑠𝐷)
ldualvsdi2.w (𝜑𝑊 ∈ LMod)
ldualvsdi2.x (𝜑𝑋𝐾)
ldualvsdi2.y (𝜑𝑌𝐾)
ldualvsdi2.g (𝜑𝐺𝐹)
Assertion
Ref Expression
ldualvsdi2 (𝜑 → ((𝑋 + 𝑌) · 𝐺) = ((𝑋 · 𝐺) (𝑌 · 𝐺)))

Proof of Theorem ldualvsdi2
StepHypRef Expression
1 ldualvsdi2.f . . 3 𝐹 = (LFnl‘𝑊)
2 eqid 2821 . . 3 (Base‘𝑊) = (Base‘𝑊)
3 ldualvsdi2.r . . 3 𝑅 = (Scalar‘𝑊)
4 ldualvsdi2.k . . 3 𝐾 = (Base‘𝑅)
5 eqid 2821 . . 3 (.r𝑅) = (.r𝑅)
6 ldualvsdi2.d . . 3 𝐷 = (LDual‘𝑊)
7 ldualvsdi2.s . . 3 · = ( ·𝑠𝐷)
8 ldualvsdi2.w . . 3 (𝜑𝑊 ∈ LMod)
9 ldualvsdi2.x . . . 4 (𝜑𝑋𝐾)
10 ldualvsdi2.y . . . 4 (𝜑𝑌𝐾)
11 ldualvsdi2.a . . . . 5 + = (+g𝑅)
123, 4, 11lmodacl 19645 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝐾𝑌𝐾) → (𝑋 + 𝑌) ∈ 𝐾)
138, 9, 10, 12syl3anc 1367 . . 3 (𝜑 → (𝑋 + 𝑌) ∈ 𝐾)
14 ldualvsdi2.g . . 3 (𝜑𝐺𝐹)
151, 2, 3, 4, 5, 6, 7, 8, 13, 14ldualvs 36288 . 2 (𝜑 → ((𝑋 + 𝑌) · 𝐺) = (𝐺f (.r𝑅)((Base‘𝑊) × {(𝑋 + 𝑌)})))
162, 3, 4, 11, 5, 1, 8, 9, 10, 14lflvsdi2a 36231 . 2 (𝜑 → (𝐺f (.r𝑅)((Base‘𝑊) × {(𝑋 + 𝑌)})) = ((𝐺f (.r𝑅)((Base‘𝑊) × {𝑋})) ∘f + (𝐺f (.r𝑅)((Base‘𝑊) × {𝑌}))))
17 ldualvsdi2.p . . . 4 = (+g𝐷)
181, 3, 4, 6, 7, 8, 9, 14ldualvscl 36290 . . . 4 (𝜑 → (𝑋 · 𝐺) ∈ 𝐹)
191, 3, 4, 6, 7, 8, 10, 14ldualvscl 36290 . . . 4 (𝜑 → (𝑌 · 𝐺) ∈ 𝐹)
201, 3, 11, 6, 17, 8, 18, 19ldualvadd 36280 . . 3 (𝜑 → ((𝑋 · 𝐺) (𝑌 · 𝐺)) = ((𝑋 · 𝐺) ∘f + (𝑌 · 𝐺)))
211, 2, 3, 4, 5, 6, 7, 8, 9, 14ldualvs 36288 . . . 4 (𝜑 → (𝑋 · 𝐺) = (𝐺f (.r𝑅)((Base‘𝑊) × {𝑋})))
221, 2, 3, 4, 5, 6, 7, 8, 10, 14ldualvs 36288 . . . 4 (𝜑 → (𝑌 · 𝐺) = (𝐺f (.r𝑅)((Base‘𝑊) × {𝑌})))
2321, 22oveq12d 7174 . . 3 (𝜑 → ((𝑋 · 𝐺) ∘f + (𝑌 · 𝐺)) = ((𝐺f (.r𝑅)((Base‘𝑊) × {𝑋})) ∘f + (𝐺f (.r𝑅)((Base‘𝑊) × {𝑌}))))
2420, 23eqtr2d 2857 . 2 (𝜑 → ((𝐺f (.r𝑅)((Base‘𝑊) × {𝑋})) ∘f + (𝐺f (.r𝑅)((Base‘𝑊) × {𝑌}))) = ((𝑋 · 𝐺) (𝑌 · 𝐺)))
2515, 16, 243eqtrd 2860 1 (𝜑 → ((𝑋 + 𝑌) · 𝐺) = ((𝑋 · 𝐺) (𝑌 · 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  {csn 4567   × cxp 5553  cfv 6355  (class class class)co 7156  f cof 7407  Basecbs 16483  +gcplusg 16565  .rcmulr 16566  Scalarcsca 16568   ·𝑠 cvsca 16569  LModclmod 19634  LFnlclfn 36208  LDualcld 36274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-plusg 16578  df-sca 16581  df-vsca 16582  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-mgp 19240  df-ring 19299  df-lmod 19636  df-lfl 36209  df-ldual 36275
This theorem is referenced by:  lduallmodlem  36303
  Copyright terms: Public domain W3C validator