MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limensuc Structured version   Visualization version   GIF version

Theorem limensuc 8694
Description: A limit ordinal is equinumerous to its successor. (Contributed by NM, 30-Oct-2003.)
Assertion
Ref Expression
limensuc ((𝐴𝑉 ∧ Lim 𝐴) → 𝐴 ≈ suc 𝐴)

Proof of Theorem limensuc
StepHypRef Expression
1 eleq1 2900 . . . 4 (𝐴 = if(Lim 𝐴, 𝐴, On) → (𝐴𝑉 ↔ if(Lim 𝐴, 𝐴, On) ∈ 𝑉))
2 id 22 . . . . 5 (𝐴 = if(Lim 𝐴, 𝐴, On) → 𝐴 = if(Lim 𝐴, 𝐴, On))
3 suceq 6256 . . . . 5 (𝐴 = if(Lim 𝐴, 𝐴, On) → suc 𝐴 = suc if(Lim 𝐴, 𝐴, On))
42, 3breq12d 5079 . . . 4 (𝐴 = if(Lim 𝐴, 𝐴, On) → (𝐴 ≈ suc 𝐴 ↔ if(Lim 𝐴, 𝐴, On) ≈ suc if(Lim 𝐴, 𝐴, On)))
51, 4imbi12d 347 . . 3 (𝐴 = if(Lim 𝐴, 𝐴, On) → ((𝐴𝑉𝐴 ≈ suc 𝐴) ↔ (if(Lim 𝐴, 𝐴, On) ∈ 𝑉 → if(Lim 𝐴, 𝐴, On) ≈ suc if(Lim 𝐴, 𝐴, On))))
6 limeq 6203 . . . . 5 (𝐴 = if(Lim 𝐴, 𝐴, On) → (Lim 𝐴 ↔ Lim if(Lim 𝐴, 𝐴, On)))
7 limeq 6203 . . . . 5 (On = if(Lim 𝐴, 𝐴, On) → (Lim On ↔ Lim if(Lim 𝐴, 𝐴, On)))
8 limon 7551 . . . . 5 Lim On
96, 7, 8elimhyp 4530 . . . 4 Lim if(Lim 𝐴, 𝐴, On)
109limensuci 8693 . . 3 (if(Lim 𝐴, 𝐴, On) ∈ 𝑉 → if(Lim 𝐴, 𝐴, On) ≈ suc if(Lim 𝐴, 𝐴, On))
115, 10dedth 4523 . 2 (Lim 𝐴 → (𝐴𝑉𝐴 ≈ suc 𝐴))
1211impcom 410 1 ((𝐴𝑉 ∧ Lim 𝐴) → 𝐴 ≈ suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  ifcif 4467   class class class wbr 5066  Oncon0 6191  Lim wlim 6192  suc csuc 6193  cen 8506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-1o 8102  df-er 8289  df-en 8510  df-dom 8511
This theorem is referenced by:  infensuc  8695
  Copyright terms: Public domain W3C validator