Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  line Structured version   Visualization version   GIF version

Theorem line 44789
Description: The line passing through the two different points 𝑋 and 𝑌 in a left module (or any extended structure having a base set, an addition, and a scalar multiplication). (Contributed by AV, 14-Jan-2023.)
Hypotheses
Ref Expression
lines.b 𝐵 = (Base‘𝑊)
lines.l 𝐿 = (LineM𝑊)
lines.s 𝑆 = (Scalar‘𝑊)
lines.k 𝐾 = (Base‘𝑆)
lines.p · = ( ·𝑠𝑊)
lines.a + = (+g𝑊)
lines.m = (-g𝑆)
lines.1 1 = (1r𝑆)
Assertion
Ref Expression
line ((𝑊𝑉 ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) → (𝑋𝐿𝑌) = {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑋) + (𝑡 · 𝑌))})
Distinct variable groups:   𝐵,𝑝   𝑡,𝐾   𝑡,𝑆   𝑊,𝑝,𝑡   𝑋,𝑝,𝑡   𝑌,𝑝,𝑡
Allowed substitution hints:   𝐵(𝑡)   + (𝑡,𝑝)   𝑆(𝑝)   · (𝑡,𝑝)   1 (𝑡,𝑝)   𝐾(𝑝)   𝐿(𝑡,𝑝)   (𝑡,𝑝)   𝑉(𝑡,𝑝)

Proof of Theorem line
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lines.b . . . . 5 𝐵 = (Base‘𝑊)
2 lines.l . . . . 5 𝐿 = (LineM𝑊)
3 lines.s . . . . 5 𝑆 = (Scalar‘𝑊)
4 lines.k . . . . 5 𝐾 = (Base‘𝑆)
5 lines.p . . . . 5 · = ( ·𝑠𝑊)
6 lines.a . . . . 5 + = (+g𝑊)
7 lines.m . . . . 5 = (-g𝑆)
8 lines.1 . . . . 5 1 = (1r𝑆)
91, 2, 3, 4, 5, 6, 7, 8lines 44788 . . . 4 (𝑊𝑉𝐿 = (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑥) + (𝑡 · 𝑦))}))
109oveqd 7166 . . 3 (𝑊𝑉 → (𝑋𝐿𝑌) = (𝑋(𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑥) + (𝑡 · 𝑦))})𝑌))
1110adantr 483 . 2 ((𝑊𝑉 ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) → (𝑋𝐿𝑌) = (𝑋(𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑥) + (𝑡 · 𝑦))})𝑌))
12 eqidd 2821 . . 3 ((𝑊𝑉 ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) → (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑥) + (𝑡 · 𝑦))}) = (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑥) + (𝑡 · 𝑦))}))
13 oveq2 7157 . . . . . . . 8 (𝑥 = 𝑋 → (( 1 𝑡) · 𝑥) = (( 1 𝑡) · 𝑋))
14 oveq2 7157 . . . . . . . 8 (𝑦 = 𝑌 → (𝑡 · 𝑦) = (𝑡 · 𝑌))
1513, 14oveqan12d 7168 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → ((( 1 𝑡) · 𝑥) + (𝑡 · 𝑦)) = ((( 1 𝑡) · 𝑋) + (𝑡 · 𝑌)))
1615eqeq2d 2831 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑝 = ((( 1 𝑡) · 𝑥) + (𝑡 · 𝑦)) ↔ 𝑝 = ((( 1 𝑡) · 𝑋) + (𝑡 · 𝑌))))
1716rexbidv 3296 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → (∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑥) + (𝑡 · 𝑦)) ↔ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑋) + (𝑡 · 𝑌))))
1817rabbidv 3477 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑥) + (𝑡 · 𝑦))} = {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑋) + (𝑡 · 𝑌))})
1918adantl 484 . . 3 (((𝑊𝑉 ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑥) + (𝑡 · 𝑦))} = {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑋) + (𝑡 · 𝑌))})
20 sneq 4570 . . . . 5 (𝑥 = 𝑋 → {𝑥} = {𝑋})
2120difeq2d 4092 . . . 4 (𝑥 = 𝑋 → (𝐵 ∖ {𝑥}) = (𝐵 ∖ {𝑋}))
2221adantl 484 . . 3 (((𝑊𝑉 ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) ∧ 𝑥 = 𝑋) → (𝐵 ∖ {𝑥}) = (𝐵 ∖ {𝑋}))
23 simpr1 1189 . . 3 ((𝑊𝑉 ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) → 𝑋𝐵)
24 id 22 . . . . . . . 8 (𝑋𝑌𝑋𝑌)
2524necomd 3070 . . . . . . 7 (𝑋𝑌𝑌𝑋)
2625anim2i 618 . . . . . 6 ((𝑌𝐵𝑋𝑌) → (𝑌𝐵𝑌𝑋))
27263adant1 1125 . . . . 5 ((𝑋𝐵𝑌𝐵𝑋𝑌) → (𝑌𝐵𝑌𝑋))
28 eldifsn 4712 . . . . 5 (𝑌 ∈ (𝐵 ∖ {𝑋}) ↔ (𝑌𝐵𝑌𝑋))
2927, 28sylibr 236 . . . 4 ((𝑋𝐵𝑌𝐵𝑋𝑌) → 𝑌 ∈ (𝐵 ∖ {𝑋}))
3029adantl 484 . . 3 ((𝑊𝑉 ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) → 𝑌 ∈ (𝐵 ∖ {𝑋}))
311fvexi 6677 . . . . 5 𝐵 ∈ V
3231rabex 5228 . . . 4 {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑋) + (𝑡 · 𝑌))} ∈ V
3332a1i 11 . . 3 ((𝑊𝑉 ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) → {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑋) + (𝑡 · 𝑌))} ∈ V)
3412, 19, 22, 23, 30, 33ovmpodx 7294 . 2 ((𝑊𝑉 ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) → (𝑋(𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑥) + (𝑡 · 𝑦))})𝑌) = {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑋) + (𝑡 · 𝑌))})
3511, 34eqtrd 2855 1 ((𝑊𝑉 ∧ (𝑋𝐵𝑌𝐵𝑋𝑌)) → (𝑋𝐿𝑌) = {𝑝𝐵 ∣ ∃𝑡𝐾 𝑝 = ((( 1 𝑡) · 𝑋) + (𝑡 · 𝑌))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1082   = wceq 1536  wcel 2113  wne 3015  wrex 3138  {crab 3141  Vcvv 3491  cdif 3926  {csn 4560  cfv 6348  (class class class)co 7149  cmpo 7151  Basecbs 16476  +gcplusg 16558  Scalarcsca 16561   ·𝑠 cvsca 16562  -gcsg 18098  1rcur 19244  LineMcline 44784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-ral 3142  df-rex 3143  df-reu 3144  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7152  df-oprab 7153  df-mpo 7154  df-1st 7682  df-2nd 7683  df-line 44786
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator