Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrxlines Structured version   Visualization version   GIF version

Theorem rrxlines 44769
Description: Definition of lines passing through two different points in a generalized real Euclidean space of finite dimension. (Contributed by AV, 14-Jan-2023.)
Hypotheses
Ref Expression
rrxlines.e 𝐸 = (ℝ^‘𝐼)
rrxlines.p 𝑃 = (ℝ ↑m 𝐼)
rrxlines.l 𝐿 = (LineM𝐸)
rrxlines.m · = ( ·𝑠𝐸)
rrxlines.a + = (+g𝐸)
Assertion
Ref Expression
rrxlines (𝐼 ∈ Fin → 𝐿 = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))}))
Distinct variable groups:   𝐸,𝑝,𝑡,𝑥,𝑦   𝐼,𝑝,𝑡,𝑥,𝑦   𝑃,𝑝
Allowed substitution hints:   𝑃(𝑥,𝑦,𝑡)   + (𝑥,𝑦,𝑡,𝑝)   · (𝑥,𝑦,𝑡,𝑝)   𝐿(𝑥,𝑦,𝑡,𝑝)

Proof of Theorem rrxlines
StepHypRef Expression
1 rrxlines.e . . . 4 𝐸 = (ℝ^‘𝐼)
21fvexi 6684 . . 3 𝐸 ∈ V
3 eqid 2821 . . . 4 (Base‘𝐸) = (Base‘𝐸)
4 rrxlines.l . . . 4 𝐿 = (LineM𝐸)
5 eqid 2821 . . . 4 (Scalar‘𝐸) = (Scalar‘𝐸)
6 eqid 2821 . . . 4 (Base‘(Scalar‘𝐸)) = (Base‘(Scalar‘𝐸))
7 rrxlines.m . . . 4 · = ( ·𝑠𝐸)
8 rrxlines.a . . . 4 + = (+g𝐸)
9 eqid 2821 . . . 4 (-g‘(Scalar‘𝐸)) = (-g‘(Scalar‘𝐸))
10 eqid 2821 . . . 4 (1r‘(Scalar‘𝐸)) = (1r‘(Scalar‘𝐸))
113, 4, 5, 6, 7, 8, 9, 10lines 44767 . . 3 (𝐸 ∈ V → 𝐿 = (𝑥 ∈ (Base‘𝐸), 𝑦 ∈ ((Base‘𝐸) ∖ {𝑥}) ↦ {𝑝 ∈ (Base‘𝐸) ∣ ∃𝑡 ∈ (Base‘(Scalar‘𝐸))𝑝 = ((((1r‘(Scalar‘𝐸))(-g‘(Scalar‘𝐸))𝑡) · 𝑥) + (𝑡 · 𝑦))}))
122, 11mp1i 13 . 2 (𝐼 ∈ Fin → 𝐿 = (𝑥 ∈ (Base‘𝐸), 𝑦 ∈ ((Base‘𝐸) ∖ {𝑥}) ↦ {𝑝 ∈ (Base‘𝐸) ∣ ∃𝑡 ∈ (Base‘(Scalar‘𝐸))𝑝 = ((((1r‘(Scalar‘𝐸))(-g‘(Scalar‘𝐸))𝑡) · 𝑥) + (𝑡 · 𝑦))}))
13 id 22 . . . . 5 (𝐼 ∈ Fin → 𝐼 ∈ Fin)
1413, 1, 3rrxbasefi 24013 . . . 4 (𝐼 ∈ Fin → (Base‘𝐸) = (ℝ ↑m 𝐼))
15 rrxlines.p . . . 4 𝑃 = (ℝ ↑m 𝐼)
1614, 15syl6eqr 2874 . . 3 (𝐼 ∈ Fin → (Base‘𝐸) = 𝑃)
1716difeq1d 4098 . . 3 (𝐼 ∈ Fin → ((Base‘𝐸) ∖ {𝑥}) = (𝑃 ∖ {𝑥}))
181rrxsca 23999 . . . . . . 7 (𝐼 ∈ Fin → (Scalar‘𝐸) = ℝfld)
1918fveq2d 6674 . . . . . 6 (𝐼 ∈ Fin → (Base‘(Scalar‘𝐸)) = (Base‘ℝfld))
20 rebase 20750 . . . . . 6 ℝ = (Base‘ℝfld)
2119, 20syl6eqr 2874 . . . . 5 (𝐼 ∈ Fin → (Base‘(Scalar‘𝐸)) = ℝ)
2218fveq2d 6674 . . . . . . . . . . . 12 (𝐼 ∈ Fin → (1r‘(Scalar‘𝐸)) = (1r‘ℝfld))
23 re1r 20757 . . . . . . . . . . . 12 1 = (1r‘ℝfld)
2422, 23syl6eqr 2874 . . . . . . . . . . 11 (𝐼 ∈ Fin → (1r‘(Scalar‘𝐸)) = 1)
2524oveq1d 7171 . . . . . . . . . 10 (𝐼 ∈ Fin → ((1r‘(Scalar‘𝐸))(-g‘(Scalar‘𝐸))𝑡) = (1(-g‘(Scalar‘𝐸))𝑡))
2625adantr 483 . . . . . . . . 9 ((𝐼 ∈ Fin ∧ 𝑡 ∈ (Base‘(Scalar‘𝐸))) → ((1r‘(Scalar‘𝐸))(-g‘(Scalar‘𝐸))𝑡) = (1(-g‘(Scalar‘𝐸))𝑡))
2718fveq2d 6674 . . . . . . . . . . 11 (𝐼 ∈ Fin → (-g‘(Scalar‘𝐸)) = (-g‘ℝfld))
2827oveqd 7173 . . . . . . . . . 10 (𝐼 ∈ Fin → (1(-g‘(Scalar‘𝐸))𝑡) = (1(-g‘ℝfld)𝑡))
2928adantr 483 . . . . . . . . 9 ((𝐼 ∈ Fin ∧ 𝑡 ∈ (Base‘(Scalar‘𝐸))) → (1(-g‘(Scalar‘𝐸))𝑡) = (1(-g‘ℝfld)𝑡))
3021eleq2d 2898 . . . . . . . . . . 11 (𝐼 ∈ Fin → (𝑡 ∈ (Base‘(Scalar‘𝐸)) ↔ 𝑡 ∈ ℝ))
31 1re 10641 . . . . . . . . . . . 12 1 ∈ ℝ
32 eqid 2821 . . . . . . . . . . . . . 14 (-g‘ℝfld) = (-g‘ℝfld)
3332resubgval 20753 . . . . . . . . . . . . 13 ((1 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (1 − 𝑡) = (1(-g‘ℝfld)𝑡))
3433eqcomd 2827 . . . . . . . . . . . 12 ((1 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (1(-g‘ℝfld)𝑡) = (1 − 𝑡))
3531, 34mpan 688 . . . . . . . . . . 11 (𝑡 ∈ ℝ → (1(-g‘ℝfld)𝑡) = (1 − 𝑡))
3630, 35syl6bi 255 . . . . . . . . . 10 (𝐼 ∈ Fin → (𝑡 ∈ (Base‘(Scalar‘𝐸)) → (1(-g‘ℝfld)𝑡) = (1 − 𝑡)))
3736imp 409 . . . . . . . . 9 ((𝐼 ∈ Fin ∧ 𝑡 ∈ (Base‘(Scalar‘𝐸))) → (1(-g‘ℝfld)𝑡) = (1 − 𝑡))
3826, 29, 373eqtrd 2860 . . . . . . . 8 ((𝐼 ∈ Fin ∧ 𝑡 ∈ (Base‘(Scalar‘𝐸))) → ((1r‘(Scalar‘𝐸))(-g‘(Scalar‘𝐸))𝑡) = (1 − 𝑡))
3938oveq1d 7171 . . . . . . 7 ((𝐼 ∈ Fin ∧ 𝑡 ∈ (Base‘(Scalar‘𝐸))) → (((1r‘(Scalar‘𝐸))(-g‘(Scalar‘𝐸))𝑡) · 𝑥) = ((1 − 𝑡) · 𝑥))
4039oveq1d 7171 . . . . . 6 ((𝐼 ∈ Fin ∧ 𝑡 ∈ (Base‘(Scalar‘𝐸))) → ((((1r‘(Scalar‘𝐸))(-g‘(Scalar‘𝐸))𝑡) · 𝑥) + (𝑡 · 𝑦)) = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦)))
4140eqeq2d 2832 . . . . 5 ((𝐼 ∈ Fin ∧ 𝑡 ∈ (Base‘(Scalar‘𝐸))) → (𝑝 = ((((1r‘(Scalar‘𝐸))(-g‘(Scalar‘𝐸))𝑡) · 𝑥) + (𝑡 · 𝑦)) ↔ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))))
4221, 41rexeqbidva 3426 . . . 4 (𝐼 ∈ Fin → (∃𝑡 ∈ (Base‘(Scalar‘𝐸))𝑝 = ((((1r‘(Scalar‘𝐸))(-g‘(Scalar‘𝐸))𝑡) · 𝑥) + (𝑡 · 𝑦)) ↔ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))))
4316, 42rabeqbidv 3485 . . 3 (𝐼 ∈ Fin → {𝑝 ∈ (Base‘𝐸) ∣ ∃𝑡 ∈ (Base‘(Scalar‘𝐸))𝑝 = ((((1r‘(Scalar‘𝐸))(-g‘(Scalar‘𝐸))𝑡) · 𝑥) + (𝑡 · 𝑦))} = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))})
4416, 17, 43mpoeq123dv 7229 . 2 (𝐼 ∈ Fin → (𝑥 ∈ (Base‘𝐸), 𝑦 ∈ ((Base‘𝐸) ∖ {𝑥}) ↦ {𝑝 ∈ (Base‘𝐸) ∣ ∃𝑡 ∈ (Base‘(Scalar‘𝐸))𝑝 = ((((1r‘(Scalar‘𝐸))(-g‘(Scalar‘𝐸))𝑡) · 𝑥) + (𝑡 · 𝑦))}) = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))}))
4512, 44eqtrd 2856 1 (𝐼 ∈ Fin → 𝐿 = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wrex 3139  {crab 3142  Vcvv 3494  cdif 3933  {csn 4567  cfv 6355  (class class class)co 7156  cmpo 7158  m cmap 8406  Fincfn 8509  cr 10536  1c1 10538  cmin 10870  Basecbs 16483  +gcplusg 16565  Scalarcsca 16568   ·𝑠 cvsca 16569  -gcsg 18105  1rcur 19251  fldcrefld 20748  ℝ^crrx 23986  LineMcline 44763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-tpos 7892  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-sup 8906  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-rp 12391  df-fz 12894  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-0g 16715  df-prds 16721  df-pws 16723  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-minusg 18107  df-sbg 18108  df-subg 18276  df-cmn 18908  df-mgp 19240  df-ur 19252  df-ring 19299  df-cring 19300  df-oppr 19373  df-dvdsr 19391  df-unit 19392  df-invr 19422  df-dvr 19433  df-drng 19504  df-field 19505  df-subrg 19533  df-sra 19944  df-rgmod 19945  df-cnfld 20546  df-refld 20749  df-dsmm 20876  df-frlm 20891  df-tng 23194  df-tcph 23773  df-rrx 23988  df-line 44765
This theorem is referenced by:  rrxline  44770  rrxlinesc  44771
  Copyright terms: Public domain W3C validator