HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnopl Structured version   Visualization version   GIF version

Theorem lnopl 29691
Description: Basic linearity property of a linear Hilbert space operator. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.)
Assertion
Ref Expression
lnopl (((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ) ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)) → (𝑇‘((𝐴 · 𝐵) + 𝐶)) = ((𝐴 · (𝑇𝐵)) + (𝑇𝐶)))

Proof of Theorem lnopl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ellnop 29635 . . . . . 6 (𝑇 ∈ LinOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))))
21simprbi 499 . . . . 5 (𝑇 ∈ LinOp → ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)))
3 oveq1 7163 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥 · 𝑦) = (𝐴 · 𝑦))
43fvoveq1d 7178 . . . . . . 7 (𝑥 = 𝐴 → (𝑇‘((𝑥 · 𝑦) + 𝑧)) = (𝑇‘((𝐴 · 𝑦) + 𝑧)))
5 oveq1 7163 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥 · (𝑇𝑦)) = (𝐴 · (𝑇𝑦)))
65oveq1d 7171 . . . . . . 7 (𝑥 = 𝐴 → ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) = ((𝐴 · (𝑇𝑦)) + (𝑇𝑧)))
74, 6eqeq12d 2837 . . . . . 6 (𝑥 = 𝐴 → ((𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) ↔ (𝑇‘((𝐴 · 𝑦) + 𝑧)) = ((𝐴 · (𝑇𝑦)) + (𝑇𝑧))))
8 oveq2 7164 . . . . . . . 8 (𝑦 = 𝐵 → (𝐴 · 𝑦) = (𝐴 · 𝐵))
98fvoveq1d 7178 . . . . . . 7 (𝑦 = 𝐵 → (𝑇‘((𝐴 · 𝑦) + 𝑧)) = (𝑇‘((𝐴 · 𝐵) + 𝑧)))
10 fveq2 6670 . . . . . . . . 9 (𝑦 = 𝐵 → (𝑇𝑦) = (𝑇𝐵))
1110oveq2d 7172 . . . . . . . 8 (𝑦 = 𝐵 → (𝐴 · (𝑇𝑦)) = (𝐴 · (𝑇𝐵)))
1211oveq1d 7171 . . . . . . 7 (𝑦 = 𝐵 → ((𝐴 · (𝑇𝑦)) + (𝑇𝑧)) = ((𝐴 · (𝑇𝐵)) + (𝑇𝑧)))
139, 12eqeq12d 2837 . . . . . 6 (𝑦 = 𝐵 → ((𝑇‘((𝐴 · 𝑦) + 𝑧)) = ((𝐴 · (𝑇𝑦)) + (𝑇𝑧)) ↔ (𝑇‘((𝐴 · 𝐵) + 𝑧)) = ((𝐴 · (𝑇𝐵)) + (𝑇𝑧))))
14 oveq2 7164 . . . . . . . 8 (𝑧 = 𝐶 → ((𝐴 · 𝐵) + 𝑧) = ((𝐴 · 𝐵) + 𝐶))
1514fveq2d 6674 . . . . . . 7 (𝑧 = 𝐶 → (𝑇‘((𝐴 · 𝐵) + 𝑧)) = (𝑇‘((𝐴 · 𝐵) + 𝐶)))
16 fveq2 6670 . . . . . . . 8 (𝑧 = 𝐶 → (𝑇𝑧) = (𝑇𝐶))
1716oveq2d 7172 . . . . . . 7 (𝑧 = 𝐶 → ((𝐴 · (𝑇𝐵)) + (𝑇𝑧)) = ((𝐴 · (𝑇𝐵)) + (𝑇𝐶)))
1815, 17eqeq12d 2837 . . . . . 6 (𝑧 = 𝐶 → ((𝑇‘((𝐴 · 𝐵) + 𝑧)) = ((𝐴 · (𝑇𝐵)) + (𝑇𝑧)) ↔ (𝑇‘((𝐴 · 𝐵) + 𝐶)) = ((𝐴 · (𝑇𝐵)) + (𝑇𝐶))))
197, 13, 18rspc3v 3636 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)) → (𝑇‘((𝐴 · 𝐵) + 𝐶)) = ((𝐴 · (𝑇𝐵)) + (𝑇𝐶))))
202, 19syl5 34 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑇 ∈ LinOp → (𝑇‘((𝐴 · 𝐵) + 𝐶)) = ((𝐴 · (𝑇𝐵)) + (𝑇𝐶))))
21203expb 1116 . . 3 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)) → (𝑇 ∈ LinOp → (𝑇‘((𝐴 · 𝐵) + 𝐶)) = ((𝐴 · (𝑇𝐵)) + (𝑇𝐶))))
2221impcom 410 . 2 ((𝑇 ∈ LinOp ∧ (𝐴 ∈ ℂ ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ))) → (𝑇‘((𝐴 · 𝐵) + 𝐶)) = ((𝐴 · (𝑇𝐵)) + (𝑇𝐶)))
2322anassrs 470 1 (((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ) ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)) → (𝑇‘((𝐴 · 𝐵) + 𝐶)) = ((𝐴 · (𝑇𝐵)) + (𝑇𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3138  wf 6351  cfv 6355  (class class class)co 7156  cc 10535  chba 28696   + cva 28697   · csm 28698  LinOpclo 28724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-hilex 28776
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-map 8408  df-lnop 29618
This theorem is referenced by:  lnop0  29743  lnopmul  29744  lnopli  29745
  Copyright terms: Public domain W3C validator