MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspc3v Structured version   Visualization version   GIF version

Theorem rspc3v 3464
Description: 3-variable restricted specialization, using implicit substitution. (Contributed by NM, 10-May-2005.)
Hypotheses
Ref Expression
rspc3v.1 (𝑥 = 𝐴 → (𝜑𝜒))
rspc3v.2 (𝑦 = 𝐵 → (𝜒𝜃))
rspc3v.3 (𝑧 = 𝐶 → (𝜃𝜓))
Assertion
Ref Expression
rspc3v ((𝐴𝑅𝐵𝑆𝐶𝑇) → (∀𝑥𝑅𝑦𝑆𝑧𝑇 𝜑𝜓))
Distinct variable groups:   𝜓,𝑧   𝜒,𝑥   𝜃,𝑦   𝑥,𝑦,𝑧,𝐴   𝑦,𝐵,𝑧   𝑧,𝐶   𝑥,𝑅   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦)   𝜒(𝑦,𝑧)   𝜃(𝑥,𝑧)   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝑅(𝑦,𝑧)   𝑆(𝑧)

Proof of Theorem rspc3v
StepHypRef Expression
1 rspc3v.1 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜒))
21ralbidv 3124 . . . 4 (𝑥 = 𝐴 → (∀𝑧𝑇 𝜑 ↔ ∀𝑧𝑇 𝜒))
3 rspc3v.2 . . . . 5 (𝑦 = 𝐵 → (𝜒𝜃))
43ralbidv 3124 . . . 4 (𝑦 = 𝐵 → (∀𝑧𝑇 𝜒 ↔ ∀𝑧𝑇 𝜃))
52, 4rspc2v 3461 . . 3 ((𝐴𝑅𝐵𝑆) → (∀𝑥𝑅𝑦𝑆𝑧𝑇 𝜑 → ∀𝑧𝑇 𝜃))
6 rspc3v.3 . . . 4 (𝑧 = 𝐶 → (𝜃𝜓))
76rspcv 3445 . . 3 (𝐶𝑇 → (∀𝑧𝑇 𝜃𝜓))
85, 7sylan9 692 . 2 (((𝐴𝑅𝐵𝑆) ∧ 𝐶𝑇) → (∀𝑥𝑅𝑦𝑆𝑧𝑇 𝜑𝜓))
983impa 1101 1 ((𝐴𝑅𝐵𝑆𝐶𝑇) → (∀𝑥𝑅𝑦𝑆𝑧𝑇 𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wral 3050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-v 3342
This theorem is referenced by:  swopolem  5196  isopolem  6758  caovassg  6997  caovcang  7000  caovordig  7004  caovordg  7006  caovdig  7013  caovdirg  7016  caofass  7096  caoftrn  7097  prslem  17132  posi  17151  latdisdlem  17390  dlatmjdi  17395  sgrpass  17491  gaass  17930  islmodd  19071  rmodislmodlem  19132  rmodislmod  19133  lsscl  19145  assalem  19518  psmettri2  22315  xmettri2  22346  axtgcgrid  25561  axtg5seg  25563  axtgpasch  25565  axtgupdim2  25569  axtgeucl  25570  tgdim01  25601  f1otrgitv  25949  grpoass  27666  vcdi  27729  vcdir  27730  vcass  27731  lnolin  27918  lnopl  29082  lnfnl  29099  omndadd  30015  axtgupdim2OLD  31055  rngodi  34016  rngodir  34017  rngoass  34018  lfli  34851  cvlexch1  35118  rngdir  42392
  Copyright terms: Public domain W3C validator