MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapval Structured version   Visualization version   GIF version

Theorem mapval 7866
Description: The value of set exponentiation (inference version). (𝐴𝑚 𝐵) is the set of all functions that map from 𝐵 to 𝐴. Definition 10.24 of [Kunen] p. 24. (Contributed by NM, 8-Dec-2003.)
Hypotheses
Ref Expression
mapval.1 𝐴 ∈ V
mapval.2 𝐵 ∈ V
Assertion
Ref Expression
mapval (𝐴𝑚 𝐵) = {𝑓𝑓:𝐵𝐴}
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓

Proof of Theorem mapval
StepHypRef Expression
1 mapval.1 . 2 𝐴 ∈ V
2 mapval.2 . 2 𝐵 ∈ V
3 mapvalg 7864 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝑚 𝐵) = {𝑓𝑓:𝐵𝐴})
41, 2, 3mp2an 708 1 (𝐴𝑚 𝐵) = {𝑓𝑓:𝐵𝐴}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1482  wcel 1989  {cab 2607  Vcvv 3198  wf 5882  (class class class)co 6647  𝑚 cmap 7854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ral 2916  df-rex 2917  df-rab 2920  df-v 3200  df-sbc 3434  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-op 4182  df-uni 4435  df-br 4652  df-opab 4711  df-id 5022  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-fv 5894  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-map 7856
This theorem is referenced by:  maprnin  29491  poimirlem4  33393  poimirlem9  33398  poimirlem26  33415  poimirlem27  33416  poimirlem28  33417  poimirlem32  33421  lautset  35194  pautsetN  35210  tendoset  35873
  Copyright terms: Public domain W3C validator