Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapvalg Structured version   Visualization version   GIF version

Theorem mapvalg 7852
 Description: The value of set exponentiation. (𝐴 ↑𝑚 𝐵) is the set of all functions that map from 𝐵 to 𝐴. Definition 10.24 of [Kunen] p. 24. (Contributed by NM, 8-Dec-2003.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
mapvalg ((𝐴𝐶𝐵𝐷) → (𝐴𝑚 𝐵) = {𝑓𝑓:𝐵𝐴})
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓
Allowed substitution hints:   𝐶(𝑓)   𝐷(𝑓)

Proof of Theorem mapvalg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mapex 7848 . . 3 ((𝐵𝐷𝐴𝐶) → {𝑓𝑓:𝐵𝐴} ∈ V)
21ancoms 469 . 2 ((𝐴𝐶𝐵𝐷) → {𝑓𝑓:𝐵𝐴} ∈ V)
3 elex 3207 . . 3 (𝐴𝐶𝐴 ∈ V)
4 elex 3207 . . 3 (𝐵𝐷𝐵 ∈ V)
5 feq3 6015 . . . . . 6 (𝑥 = 𝐴 → (𝑓:𝑦𝑥𝑓:𝑦𝐴))
65abbidv 2739 . . . . 5 (𝑥 = 𝐴 → {𝑓𝑓:𝑦𝑥} = {𝑓𝑓:𝑦𝐴})
7 feq2 6014 . . . . . 6 (𝑦 = 𝐵 → (𝑓:𝑦𝐴𝑓:𝐵𝐴))
87abbidv 2739 . . . . 5 (𝑦 = 𝐵 → {𝑓𝑓:𝑦𝐴} = {𝑓𝑓:𝐵𝐴})
9 df-map 7844 . . . . 5 𝑚 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓𝑓:𝑦𝑥})
106, 8, 9ovmpt2g 6780 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ {𝑓𝑓:𝐵𝐴} ∈ V) → (𝐴𝑚 𝐵) = {𝑓𝑓:𝐵𝐴})
11103expia 1265 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝑓𝑓:𝐵𝐴} ∈ V → (𝐴𝑚 𝐵) = {𝑓𝑓:𝐵𝐴}))
123, 4, 11syl2an 494 . 2 ((𝐴𝐶𝐵𝐷) → ({𝑓𝑓:𝐵𝐴} ∈ V → (𝐴𝑚 𝐵) = {𝑓𝑓:𝐵𝐴}))
132, 12mpd 15 1 ((𝐴𝐶𝐵𝐷) → (𝐴𝑚 𝐵) = {𝑓𝑓:𝐵𝐴})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1481   ∈ wcel 1988  {cab 2606  Vcvv 3195  ⟶wf 5872  (class class class)co 6635   ↑𝑚 cmap 7842 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ral 2914  df-rex 2915  df-rab 2918  df-v 3197  df-sbc 3430  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-br 4645  df-opab 4704  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-fv 5884  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-map 7844 This theorem is referenced by:  mapval  7854  elmapg  7855  ixpconstg  7902  hashf1lem2  13223  symgbasfi  17787  birthdaylem1  24659  birthdaylem2  24660  cnfex  39007
 Copyright terms: Public domain W3C validator