Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meadjuni Structured version   Visualization version   GIF version

Theorem meadjuni 39968
Description: The measure of the disjoint union of a countable set is the extended sum of the measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
meadjuni.m (𝜑𝑀 ∈ Meas)
meadjuni.s 𝑆 = dom 𝑀
meadjuni.x (𝜑𝑋𝑆)
meadjuni.cnb (𝜑𝑋 ≼ ω)
meadjuni.dj (𝜑Disj 𝑥𝑋 𝑥)
Assertion
Ref Expression
meadjuni (𝜑 → (𝑀 𝑋) = (Σ^‘(𝑀𝑋)))
Distinct variable group:   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥)   𝑆(𝑥)   𝑀(𝑥)

Proof of Theorem meadjuni
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 meadjuni.cnb . . 3 (𝜑𝑋 ≼ ω)
2 meadjuni.dj . . 3 (𝜑Disj 𝑥𝑋 𝑥)
31, 2jca 554 . 2 (𝜑 → (𝑋 ≼ ω ∧ Disj 𝑥𝑋 𝑥))
4 meadjuni.x . . . . 5 (𝜑𝑋𝑆)
5 meadjuni.s . . . . 5 𝑆 = dom 𝑀
64, 5syl6sseq 3635 . . . 4 (𝜑𝑋 ⊆ dom 𝑀)
7 meadjuni.m . . . . . . 7 (𝜑𝑀 ∈ Meas)
87, 5dmmeasal 39963 . . . . . 6 (𝜑𝑆 ∈ SAlg)
98, 4ssexd 4770 . . . . 5 (𝜑𝑋 ∈ V)
10 elpwg 4143 . . . . 5 (𝑋 ∈ V → (𝑋 ∈ 𝒫 dom 𝑀𝑋 ⊆ dom 𝑀))
119, 10syl 17 . . . 4 (𝜑 → (𝑋 ∈ 𝒫 dom 𝑀𝑋 ⊆ dom 𝑀))
126, 11mpbird 247 . . 3 (𝜑𝑋 ∈ 𝒫 dom 𝑀)
13 ismea 39962 . . . . 5 (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑀((𝑦 ≼ ω ∧ Disj 𝑥𝑦 𝑥) → (𝑀 𝑦) = (Σ^‘(𝑀𝑦)))))
147, 13sylib 208 . . . 4 (𝜑 → (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑀((𝑦 ≼ ω ∧ Disj 𝑥𝑦 𝑥) → (𝑀 𝑦) = (Σ^‘(𝑀𝑦)))))
1514simprd 479 . . 3 (𝜑 → ∀𝑦 ∈ 𝒫 dom 𝑀((𝑦 ≼ ω ∧ Disj 𝑥𝑦 𝑥) → (𝑀 𝑦) = (Σ^‘(𝑀𝑦))))
16 breq1 4621 . . . . . 6 (𝑦 = 𝑋 → (𝑦 ≼ ω ↔ 𝑋 ≼ ω))
17 disjeq1 4595 . . . . . 6 (𝑦 = 𝑋 → (Disj 𝑥𝑦 𝑥Disj 𝑥𝑋 𝑥))
1816, 17anbi12d 746 . . . . 5 (𝑦 = 𝑋 → ((𝑦 ≼ ω ∧ Disj 𝑥𝑦 𝑥) ↔ (𝑋 ≼ ω ∧ Disj 𝑥𝑋 𝑥)))
19 unieq 4415 . . . . . . 7 (𝑦 = 𝑋 𝑦 = 𝑋)
2019fveq2d 6154 . . . . . 6 (𝑦 = 𝑋 → (𝑀 𝑦) = (𝑀 𝑋))
21 reseq2 5355 . . . . . . 7 (𝑦 = 𝑋 → (𝑀𝑦) = (𝑀𝑋))
2221fveq2d 6154 . . . . . 6 (𝑦 = 𝑋 → (Σ^‘(𝑀𝑦)) = (Σ^‘(𝑀𝑋)))
2320, 22eqeq12d 2641 . . . . 5 (𝑦 = 𝑋 → ((𝑀 𝑦) = (Σ^‘(𝑀𝑦)) ↔ (𝑀 𝑋) = (Σ^‘(𝑀𝑋))))
2418, 23imbi12d 334 . . . 4 (𝑦 = 𝑋 → (((𝑦 ≼ ω ∧ Disj 𝑥𝑦 𝑥) → (𝑀 𝑦) = (Σ^‘(𝑀𝑦))) ↔ ((𝑋 ≼ ω ∧ Disj 𝑥𝑋 𝑥) → (𝑀 𝑋) = (Σ^‘(𝑀𝑋)))))
2524rspcva 3298 . . 3 ((𝑋 ∈ 𝒫 dom 𝑀 ∧ ∀𝑦 ∈ 𝒫 dom 𝑀((𝑦 ≼ ω ∧ Disj 𝑥𝑦 𝑥) → (𝑀 𝑦) = (Σ^‘(𝑀𝑦)))) → ((𝑋 ≼ ω ∧ Disj 𝑥𝑋 𝑥) → (𝑀 𝑋) = (Σ^‘(𝑀𝑋))))
2612, 15, 25syl2anc 692 . 2 (𝜑 → ((𝑋 ≼ ω ∧ Disj 𝑥𝑋 𝑥) → (𝑀 𝑋) = (Σ^‘(𝑀𝑋))))
273, 26mpd 15 1 (𝜑 → (𝑀 𝑋) = (Σ^‘(𝑀𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1992  wral 2912  Vcvv 3191  wss 3560  c0 3896  𝒫 cpw 4135   cuni 4407  Disj wdisj 4588   class class class wbr 4618  dom cdm 5079  cres 5081  wf 5846  cfv 5850  (class class class)co 6605  ωcom 7013  cdom 7898  0cc0 9881  +∞cpnf 10016  [,]cicc 12117  SAlgcsalg 39822  Σ^csumge0 39873  Meascmea 39960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pr 4872
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-disj 4589  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-mea 39961
This theorem is referenced by:  meadjun  39973  meadjiun  39977
  Copyright terms: Public domain W3C validator