MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  motcgr Structured version   Visualization version   GIF version

Theorem motcgr 25412
Description: Property of a motion: distances are preserved. (Contributed by Thierry Arnoux, 15-Dec-2019.)
Hypotheses
Ref Expression
ismot.p 𝑃 = (Base‘𝐺)
ismot.m = (dist‘𝐺)
motgrp.1 (𝜑𝐺𝑉)
motcgr.a (𝜑𝐴𝑃)
motcgr.b (𝜑𝐵𝑃)
motcgr.f (𝜑𝐹 ∈ (𝐺Ismt𝐺))
Assertion
Ref Expression
motcgr (𝜑 → ((𝐹𝐴) (𝐹𝐵)) = (𝐴 𝐵))

Proof of Theorem motcgr
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 motcgr.a . 2 (𝜑𝐴𝑃)
2 motcgr.b . 2 (𝜑𝐵𝑃)
3 motcgr.f . . . 4 (𝜑𝐹 ∈ (𝐺Ismt𝐺))
4 motgrp.1 . . . . 5 (𝜑𝐺𝑉)
5 ismot.p . . . . . 6 𝑃 = (Base‘𝐺)
6 ismot.m . . . . . 6 = (dist‘𝐺)
75, 6ismot 25411 . . . . 5 (𝐺𝑉 → (𝐹 ∈ (𝐺Ismt𝐺) ↔ (𝐹:𝑃1-1-onto𝑃 ∧ ∀𝑎𝑃𝑏𝑃 ((𝐹𝑎) (𝐹𝑏)) = (𝑎 𝑏))))
84, 7syl 17 . . . 4 (𝜑 → (𝐹 ∈ (𝐺Ismt𝐺) ↔ (𝐹:𝑃1-1-onto𝑃 ∧ ∀𝑎𝑃𝑏𝑃 ((𝐹𝑎) (𝐹𝑏)) = (𝑎 𝑏))))
93, 8mpbid 222 . . 3 (𝜑 → (𝐹:𝑃1-1-onto𝑃 ∧ ∀𝑎𝑃𝑏𝑃 ((𝐹𝑎) (𝐹𝑏)) = (𝑎 𝑏)))
109simprd 479 . 2 (𝜑 → ∀𝑎𝑃𝑏𝑃 ((𝐹𝑎) (𝐹𝑏)) = (𝑎 𝑏))
11 fveq2 6178 . . . . 5 (𝑎 = 𝐴 → (𝐹𝑎) = (𝐹𝐴))
1211oveq1d 6650 . . . 4 (𝑎 = 𝐴 → ((𝐹𝑎) (𝐹𝑏)) = ((𝐹𝐴) (𝐹𝑏)))
13 oveq1 6642 . . . 4 (𝑎 = 𝐴 → (𝑎 𝑏) = (𝐴 𝑏))
1412, 13eqeq12d 2635 . . 3 (𝑎 = 𝐴 → (((𝐹𝑎) (𝐹𝑏)) = (𝑎 𝑏) ↔ ((𝐹𝐴) (𝐹𝑏)) = (𝐴 𝑏)))
15 fveq2 6178 . . . . 5 (𝑏 = 𝐵 → (𝐹𝑏) = (𝐹𝐵))
1615oveq2d 6651 . . . 4 (𝑏 = 𝐵 → ((𝐹𝐴) (𝐹𝑏)) = ((𝐹𝐴) (𝐹𝐵)))
17 oveq2 6643 . . . 4 (𝑏 = 𝐵 → (𝐴 𝑏) = (𝐴 𝐵))
1816, 17eqeq12d 2635 . . 3 (𝑏 = 𝐵 → (((𝐹𝐴) (𝐹𝑏)) = (𝐴 𝑏) ↔ ((𝐹𝐴) (𝐹𝐵)) = (𝐴 𝐵)))
1914, 18rspc2va 3318 . 2 (((𝐴𝑃𝐵𝑃) ∧ ∀𝑎𝑃𝑏𝑃 ((𝐹𝑎) (𝐹𝑏)) = (𝑎 𝑏)) → ((𝐹𝐴) (𝐹𝐵)) = (𝐴 𝐵))
201, 2, 10, 19syl21anc 1323 1 (𝜑 → ((𝐹𝐴) (𝐹𝐵)) = (𝐴 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1481  wcel 1988  wral 2909  1-1-ontowf1o 5875  cfv 5876  (class class class)co 6635  Basecbs 15838  distcds 15931  Ismtcismt 25408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-map 7844  df-ismt 25409
This theorem is referenced by:  motco  25416  cnvmot  25417  motcgrg  25420  motcgr3  25421
  Copyright terms: Public domain W3C validator