Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mstapst Structured version   Visualization version   GIF version

Theorem mstapst 31772
Description: A statement is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mstapst.p 𝑃 = (mPreSt‘𝑇)
mstapst.s 𝑆 = (mStat‘𝑇)
Assertion
Ref Expression
mstapst 𝑆𝑃

Proof of Theorem mstapst
StepHypRef Expression
1 eqid 2760 . . 3 (mStRed‘𝑇) = (mStRed‘𝑇)
2 mstapst.s . . 3 𝑆 = (mStat‘𝑇)
31, 2mstaval 31769 . 2 𝑆 = ran (mStRed‘𝑇)
4 mstapst.p . . . 4 𝑃 = (mPreSt‘𝑇)
54, 1msrf 31767 . . 3 (mStRed‘𝑇):𝑃𝑃
6 frn 6214 . . 3 ((mStRed‘𝑇):𝑃𝑃 → ran (mStRed‘𝑇) ⊆ 𝑃)
75, 6ax-mp 5 . 2 ran (mStRed‘𝑇) ⊆ 𝑃
83, 7eqsstri 3776 1 𝑆𝑃
Colors of variables: wff setvar class
Syntax hints:   = wceq 1632  wss 3715  ran crn 5267  wf 6045  cfv 6049  mPreStcmpst 31698  mStRedcmsr 31699  mStatcmsta 31700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-ot 4330  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-1st 7334  df-2nd 7335  df-mpst 31718  df-msr 31719  df-msta 31720
This theorem is referenced by:  elmsta  31773  mclsssvlem  31787  mclsax  31794  mclsind  31795  mclsppslem  31808
  Copyright terms: Public domain W3C validator