![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mstapst | Structured version Visualization version GIF version |
Description: A statement is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mstapst.p | ⊢ 𝑃 = (mPreSt‘𝑇) |
mstapst.s | ⊢ 𝑆 = (mStat‘𝑇) |
Ref | Expression |
---|---|
mstapst | ⊢ 𝑆 ⊆ 𝑃 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2760 | . . 3 ⊢ (mStRed‘𝑇) = (mStRed‘𝑇) | |
2 | mstapst.s | . . 3 ⊢ 𝑆 = (mStat‘𝑇) | |
3 | 1, 2 | mstaval 31769 | . 2 ⊢ 𝑆 = ran (mStRed‘𝑇) |
4 | mstapst.p | . . . 4 ⊢ 𝑃 = (mPreSt‘𝑇) | |
5 | 4, 1 | msrf 31767 | . . 3 ⊢ (mStRed‘𝑇):𝑃⟶𝑃 |
6 | frn 6214 | . . 3 ⊢ ((mStRed‘𝑇):𝑃⟶𝑃 → ran (mStRed‘𝑇) ⊆ 𝑃) | |
7 | 5, 6 | ax-mp 5 | . 2 ⊢ ran (mStRed‘𝑇) ⊆ 𝑃 |
8 | 3, 7 | eqsstri 3776 | 1 ⊢ 𝑆 ⊆ 𝑃 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ⊆ wss 3715 ran crn 5267 ⟶wf 6045 ‘cfv 6049 mPreStcmpst 31698 mStRedcmsr 31699 mStatcmsta 31700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-ot 4330 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-1st 7334 df-2nd 7335 df-mpst 31718 df-msr 31719 df-msta 31720 |
This theorem is referenced by: elmsta 31773 mclsssvlem 31787 mclsax 31794 mclsind 31795 mclsppslem 31808 |
Copyright terms: Public domain | W3C validator |