Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mclsind Structured version   Visualization version   GIF version

Theorem mclsind 31210
Description: Induction theorem for closure: any other set 𝑄 closed under the axioms and the hypotheses contains all the elements of the closure. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mclsval.d 𝐷 = (mDV‘𝑇)
mclsval.e 𝐸 = (mEx‘𝑇)
mclsval.c 𝐶 = (mCls‘𝑇)
mclsval.1 (𝜑𝑇 ∈ mFS)
mclsval.2 (𝜑𝐾𝐷)
mclsval.3 (𝜑𝐵𝐸)
mclsax.a 𝐴 = (mAx‘𝑇)
mclsax.l 𝐿 = (mSubst‘𝑇)
mclsax.v 𝑉 = (mVR‘𝑇)
mclsax.h 𝐻 = (mVH‘𝑇)
mclsax.w 𝑊 = (mVars‘𝑇)
mclsind.4 (𝜑𝐵𝑄)
mclsind.5 ((𝜑𝑣𝑉) → (𝐻𝑣) ∈ 𝑄)
mclsind.6 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑄)
Assertion
Ref Expression
mclsind (𝜑 → (𝐾𝐶𝐵) ⊆ 𝑄)
Distinct variable groups:   𝑚,𝑜,𝑝,𝑠,𝑣,𝐸   𝑥,𝑚,𝐻,𝑜,𝑝,𝑠,𝑣   𝑦,𝑚,𝐵,𝑜,𝑝,𝑠,𝑣,𝑥   𝐶,𝑚,𝑜,𝑝,𝑠,𝑣,𝑥   𝑚,𝐿,𝑜,𝑝,𝑠,𝑥,𝑦   𝐴,𝑚,𝑜,𝑝,𝑠   𝑇,𝑚,𝑜,𝑝,𝑠,𝑥,𝑦   𝜑,𝑚,𝑜,𝑝,𝑠,𝑣,𝑥,𝑦   𝑄,𝑚,𝑜,𝑝,𝑠,𝑣   𝑣,𝑉,𝑥   𝑚,𝑊,𝑜,𝑝,𝑠,𝑥   𝑚,𝐾,𝑜,𝑝,𝑠,𝑣,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑣)   𝐶(𝑦)   𝐷(𝑥,𝑦,𝑣,𝑚,𝑜,𝑠,𝑝)   𝑄(𝑥,𝑦)   𝑇(𝑣)   𝐸(𝑥,𝑦)   𝐻(𝑦)   𝐿(𝑣)   𝑉(𝑦,𝑚,𝑜,𝑠,𝑝)   𝑊(𝑦,𝑣)

Proof of Theorem mclsind
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 mclsval.d . . 3 𝐷 = (mDV‘𝑇)
2 mclsval.e . . 3 𝐸 = (mEx‘𝑇)
3 mclsval.c . . 3 𝐶 = (mCls‘𝑇)
4 mclsval.1 . . 3 (𝜑𝑇 ∈ mFS)
5 mclsval.2 . . 3 (𝜑𝐾𝐷)
6 mclsval.3 . . 3 (𝜑𝐵𝐸)
7 mclsax.h . . 3 𝐻 = (mVH‘𝑇)
8 mclsax.a . . 3 𝐴 = (mAx‘𝑇)
9 mclsax.l . . 3 𝐿 = (mSubst‘𝑇)
10 mclsax.w . . 3 𝑊 = (mVars‘𝑇)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10mclsval 31203 . 2 (𝜑 → (𝐾𝐶𝐵) = {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))})
12 mclsind.4 . . . . . . 7 (𝜑𝐵𝑄)
136, 12ssind 3820 . . . . . 6 (𝜑𝐵 ⊆ (𝐸𝑄))
14 mclsax.v . . . . . . . . . . 11 𝑉 = (mVR‘𝑇)
1514, 2, 7mvhf 31198 . . . . . . . . . 10 (𝑇 ∈ mFS → 𝐻:𝑉𝐸)
164, 15syl 17 . . . . . . . . 9 (𝜑𝐻:𝑉𝐸)
17 ffn 6007 . . . . . . . . 9 (𝐻:𝑉𝐸𝐻 Fn 𝑉)
1816, 17syl 17 . . . . . . . 8 (𝜑𝐻 Fn 𝑉)
1916ffvelrnda 6320 . . . . . . . . . 10 ((𝜑𝑣𝑉) → (𝐻𝑣) ∈ 𝐸)
20 mclsind.5 . . . . . . . . . 10 ((𝜑𝑣𝑉) → (𝐻𝑣) ∈ 𝑄)
2119, 20elind 3781 . . . . . . . . 9 ((𝜑𝑣𝑉) → (𝐻𝑣) ∈ (𝐸𝑄))
2221ralrimiva 2961 . . . . . . . 8 (𝜑 → ∀𝑣𝑉 (𝐻𝑣) ∈ (𝐸𝑄))
23 ffnfv 6349 . . . . . . . 8 (𝐻:𝑉⟶(𝐸𝑄) ↔ (𝐻 Fn 𝑉 ∧ ∀𝑣𝑉 (𝐻𝑣) ∈ (𝐸𝑄)))
2418, 22, 23sylanbrc 697 . . . . . . 7 (𝜑𝐻:𝑉⟶(𝐸𝑄))
25 frn 6015 . . . . . . 7 (𝐻:𝑉⟶(𝐸𝑄) → ran 𝐻 ⊆ (𝐸𝑄))
2624, 25syl 17 . . . . . 6 (𝜑 → ran 𝐻 ⊆ (𝐸𝑄))
2713, 26unssd 3772 . . . . 5 (𝜑 → (𝐵 ∪ ran 𝐻) ⊆ (𝐸𝑄))
28 id 22 . . . . . . . . . . . 12 ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) → (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄))
29 inss2 3817 . . . . . . . . . . . 12 (𝐸𝑄) ⊆ 𝑄
3028, 29syl6ss 3599 . . . . . . . . . . 11 ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) → (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)
314adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → 𝑇 ∈ mFS)
32 eqid 2621 . . . . . . . . . . . . . . . . . . . . 21 (mREx‘𝑇) = (mREx‘𝑇)
3314, 32, 9, 2msubff 31170 . . . . . . . . . . . . . . . . . . . 20 (𝑇 ∈ mFS → 𝐿:((mREx‘𝑇) ↑pm 𝑉)⟶(𝐸𝑚 𝐸))
34 frn 6015 . . . . . . . . . . . . . . . . . . . 20 (𝐿:((mREx‘𝑇) ↑pm 𝑉)⟶(𝐸𝑚 𝐸) → ran 𝐿 ⊆ (𝐸𝑚 𝐸))
3531, 33, 343syl 18 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → ran 𝐿 ⊆ (𝐸𝑚 𝐸))
36 simpr2 1066 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → 𝑠 ∈ ran 𝐿)
3735, 36sseldd 3588 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → 𝑠 ∈ (𝐸𝑚 𝐸))
38 elmapi 7831 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ (𝐸𝑚 𝐸) → 𝑠:𝐸𝐸)
3937, 38syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → 𝑠:𝐸𝐸)
40 eqid 2621 . . . . . . . . . . . . . . . . . . . . . 22 (mStat‘𝑇) = (mStat‘𝑇)
418, 40maxsta 31194 . . . . . . . . . . . . . . . . . . . . 21 (𝑇 ∈ mFS → 𝐴 ⊆ (mStat‘𝑇))
4231, 41syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → 𝐴 ⊆ (mStat‘𝑇))
43 eqid 2621 . . . . . . . . . . . . . . . . . . . . 21 (mPreSt‘𝑇) = (mPreSt‘𝑇)
4443, 40mstapst 31187 . . . . . . . . . . . . . . . . . . . 20 (mStat‘𝑇) ⊆ (mPreSt‘𝑇)
4542, 44syl6ss 3599 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → 𝐴 ⊆ (mPreSt‘𝑇))
46 simpr1 1065 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → ⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴)
4745, 46sseldd 3588 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → ⟨𝑚, 𝑜, 𝑝⟩ ∈ (mPreSt‘𝑇))
481, 2, 43elmpst 31176 . . . . . . . . . . . . . . . . . . 19 (⟨𝑚, 𝑜, 𝑝⟩ ∈ (mPreSt‘𝑇) ↔ ((𝑚𝐷𝑚 = 𝑚) ∧ (𝑜𝐸𝑜 ∈ Fin) ∧ 𝑝𝐸))
4948simp3bi 1076 . . . . . . . . . . . . . . . . . 18 (⟨𝑚, 𝑜, 𝑝⟩ ∈ (mPreSt‘𝑇) → 𝑝𝐸)
5047, 49syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → 𝑝𝐸)
5139, 50ffvelrnd 6321 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄)) → (𝑠𝑝) ∈ 𝐸)
52513adant3 1079 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝐸)
53 mclsind.6 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑄)
5452, 53elind 3781 . . . . . . . . . . . . . 14 ((𝜑 ∧ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄))
55543exp 1261 . . . . . . . . . . . . 13 (𝜑 → ((⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄) → (∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾) → (𝑠𝑝) ∈ (𝐸𝑄))))
56553expd 1281 . . . . . . . . . . . 12 (𝜑 → (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → (𝑠 ∈ ran 𝐿 → ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄 → (∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾) → (𝑠𝑝) ∈ (𝐸𝑄))))))
5756imp31 448 . . . . . . . . . . 11 (((𝜑 ∧ ⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴) ∧ 𝑠 ∈ ran 𝐿) → ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄 → (∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾) → (𝑠𝑝) ∈ (𝐸𝑄))))
5830, 57syl5 34 . . . . . . . . . 10 (((𝜑 ∧ ⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴) ∧ 𝑠 ∈ ran 𝐿) → ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) → (∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾) → (𝑠𝑝) ∈ (𝐸𝑄))))
5958impd 447 . . . . . . . . 9 (((𝜑 ∧ ⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴) ∧ 𝑠 ∈ ran 𝐿) → (((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄)))
6059ralrimiva 2961 . . . . . . . 8 ((𝜑 ∧ ⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴) → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄)))
6160ex 450 . . . . . . 7 (𝜑 → (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄))))
6261alrimiv 1852 . . . . . 6 (𝜑 → ∀𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄))))
6362alrimivv 1853 . . . . 5 (𝜑 → ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄))))
64 fvex 6163 . . . . . . . 8 (mEx‘𝑇) ∈ V
652, 64eqeltri 2694 . . . . . . 7 𝐸 ∈ V
6665inex1 4764 . . . . . 6 (𝐸𝑄) ∈ V
67 sseq2 3611 . . . . . . 7 (𝑐 = (𝐸𝑄) → ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ↔ (𝐵 ∪ ran 𝐻) ⊆ (𝐸𝑄)))
68 sseq2 3611 . . . . . . . . . . . . 13 (𝑐 = (𝐸𝑄) → ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ↔ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄)))
6968anbi1d 740 . . . . . . . . . . . 12 (𝑐 = (𝐸𝑄) → (((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) ↔ ((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾))))
70 eleq2 2687 . . . . . . . . . . . 12 (𝑐 = (𝐸𝑄) → ((𝑠𝑝) ∈ 𝑐 ↔ (𝑠𝑝) ∈ (𝐸𝑄)))
7169, 70imbi12d 334 . . . . . . . . . . 11 (𝑐 = (𝐸𝑄) → ((((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐) ↔ (((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄))))
7271ralbidv 2981 . . . . . . . . . 10 (𝑐 = (𝐸𝑄) → (∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐) ↔ ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄))))
7372imbi2d 330 . . . . . . . . 9 (𝑐 = (𝐸𝑄) → ((⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)) ↔ (⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄)))))
7473albidv 1846 . . . . . . . 8 (𝑐 = (𝐸𝑄) → (∀𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)) ↔ ∀𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄)))))
75742albidv 1848 . . . . . . 7 (𝑐 = (𝐸𝑄) → (∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)) ↔ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄)))))
7667, 75anbi12d 746 . . . . . 6 (𝑐 = (𝐸𝑄) → (((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐))) ↔ ((𝐵 ∪ ran 𝐻) ⊆ (𝐸𝑄) ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄))))))
7766, 76elab 3337 . . . . 5 ((𝐸𝑄) ∈ {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} ↔ ((𝐵 ∪ ran 𝐻) ⊆ (𝐸𝑄) ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (𝐸𝑄) ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ (𝐸𝑄)))))
7827, 63, 77sylanbrc 697 . . . 4 (𝜑 → (𝐸𝑄) ∈ {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))})
79 intss1 4462 . . . 4 ((𝐸𝑄) ∈ {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} → {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} ⊆ (𝐸𝑄))
8078, 79syl 17 . . 3 (𝜑 {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} ⊆ (𝐸𝑄))
8180, 29syl6ss 3599 . 2 (𝜑 {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ 𝐴 → ∀𝑠 ∈ ran 𝐿(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻𝑥))) × (𝑊‘(𝑠‘(𝐻𝑦)))) ⊆ 𝐾)) → (𝑠𝑝) ∈ 𝑐)))} ⊆ 𝑄)
8211, 81eqsstrd 3623 1 (𝜑 → (𝐾𝐶𝐵) ⊆ 𝑄)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036  wal 1478   = wceq 1480  wcel 1987  {cab 2607  wral 2907  Vcvv 3189  cun 3557  cin 3558  wss 3559  cotp 4161   cint 4445   class class class wbr 4618   × cxp 5077  ccnv 5078  ran crn 5080  cima 5082   Fn wfn 5847  wf 5848  cfv 5852  (class class class)co 6610  𝑚 cmap 7809  pm cpm 7810  Fincfn 7907  mVRcmvar 31101  mAxcmax 31105  mRExcmrex 31106  mExcmex 31107  mDVcmdv 31108  mVarscmvrs 31109  mSubstcmsub 31111  mVHcmvh 31112  mPreStcmpst 31113  mStatcmsta 31115  mFScmfs 31116  mClscmcls 31117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-ot 4162  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-map 7811  df-pm 7812  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-card 8717  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-nn 10973  df-2 11031  df-n0 11245  df-z 11330  df-uz 11640  df-fz 12277  df-fzo 12415  df-seq 12750  df-hash 13066  df-word 13246  df-concat 13248  df-s1 13249  df-struct 15794  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-ress 15799  df-plusg 15886  df-0g 16034  df-gsum 16035  df-mgm 17174  df-sgrp 17216  df-mnd 17227  df-submnd 17268  df-frmd 17318  df-mrex 31126  df-mex 31127  df-mrsub 31130  df-msub 31131  df-mvh 31132  df-mpst 31133  df-msr 31134  df-msta 31135  df-mfs 31136  df-mcls 31137
This theorem is referenced by:  mclspps  31224
  Copyright terms: Public domain W3C validator