Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofmul12 Structured version   Visualization version   GIF version

Theorem ofmul12 38841
Description: Function analogue of mul12 10240. (Contributed by Steve Rodriguez, 13-Nov-2015.)
Assertion
Ref Expression
ofmul12 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) → (𝐹𝑓 · (𝐺𝑓 · 𝐻)) = (𝐺𝑓 · (𝐹𝑓 · 𝐻)))

Proof of Theorem ofmul12
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpll 805 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) → 𝐴𝑉)
2 simplr 807 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) → 𝐹:𝐴⟶ℂ)
3 ffn 6083 . . 3 (𝐹:𝐴⟶ℂ → 𝐹 Fn 𝐴)
42, 3syl 17 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) → 𝐹 Fn 𝐴)
5 simprl 809 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) → 𝐺:𝐴⟶ℂ)
6 ffn 6083 . . . 4 (𝐺:𝐴⟶ℂ → 𝐺 Fn 𝐴)
75, 6syl 17 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) → 𝐺 Fn 𝐴)
8 simprr 811 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) → 𝐻:𝐴⟶ℂ)
9 ffn 6083 . . . 4 (𝐻:𝐴⟶ℂ → 𝐻 Fn 𝐴)
108, 9syl 17 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) → 𝐻 Fn 𝐴)
11 inidm 3855 . . 3 (𝐴𝐴) = 𝐴
127, 10, 1, 1, 11offn 6950 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) → (𝐺𝑓 · 𝐻) Fn 𝐴)
134, 10, 1, 1, 11offn 6950 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) → (𝐹𝑓 · 𝐻) Fn 𝐴)
147, 13, 1, 1, 11offn 6950 . 2 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) → (𝐺𝑓 · (𝐹𝑓 · 𝐻)) Fn 𝐴)
15 eqidd 2652 . 2 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
16 eqidd 2652 . . 3 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) ∧ 𝑥𝐴) → (𝐺𝑥) = (𝐺𝑥))
17 eqidd 2652 . . 3 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) ∧ 𝑥𝐴) → (𝐻𝑥) = (𝐻𝑥))
187, 10, 1, 1, 11, 16, 17ofval 6948 . 2 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) ∧ 𝑥𝐴) → ((𝐺𝑓 · 𝐻)‘𝑥) = ((𝐺𝑥) · (𝐻𝑥)))
192ffvelrnda 6399 . . . 4 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
205ffvelrnda 6399 . . . 4 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) ∧ 𝑥𝐴) → (𝐺𝑥) ∈ ℂ)
218ffvelrnda 6399 . . . 4 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) ∧ 𝑥𝐴) → (𝐻𝑥) ∈ ℂ)
2219, 20, 21mul12d 10283 . . 3 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) ∧ 𝑥𝐴) → ((𝐹𝑥) · ((𝐺𝑥) · (𝐻𝑥))) = ((𝐺𝑥) · ((𝐹𝑥) · (𝐻𝑥))))
234, 10, 1, 1, 11, 15, 17ofval 6948 . . . 4 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) ∧ 𝑥𝐴) → ((𝐹𝑓 · 𝐻)‘𝑥) = ((𝐹𝑥) · (𝐻𝑥)))
247, 13, 1, 1, 11, 16, 23ofval 6948 . . 3 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) ∧ 𝑥𝐴) → ((𝐺𝑓 · (𝐹𝑓 · 𝐻))‘𝑥) = ((𝐺𝑥) · ((𝐹𝑥) · (𝐻𝑥))))
2522, 24eqtr4d 2688 . 2 ((((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) ∧ 𝑥𝐴) → ((𝐹𝑥) · ((𝐺𝑥) · (𝐻𝑥))) = ((𝐺𝑓 · (𝐹𝑓 · 𝐻))‘𝑥))
261, 4, 12, 14, 15, 18, 25offveq 6960 1 (((𝐴𝑉𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) → (𝐹𝑓 · (𝐺𝑓 · 𝐻)) = (𝐺𝑓 · (𝐹𝑓 · 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030   Fn wfn 5921  wf 5922  cfv 5926  (class class class)co 6690  𝑓 cof 6937  cc 9972   · cmul 9979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-mulcom 10038  ax-mulass 10040
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939
This theorem is referenced by:  expgrowth  38851
  Copyright terms: Public domain W3C validator