MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelco Structured version   Visualization version   GIF version

Theorem opelco 5203
Description: Ordered pair membership in a composition. (Contributed by NM, 27-Dec-1996.) (Revised by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
opelco.1 𝐴 ∈ V
opelco.2 𝐵 ∈ V
Assertion
Ref Expression
opelco (⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷) ↔ ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷

Proof of Theorem opelco
StepHypRef Expression
1 df-br 4578 . 2 (𝐴(𝐶𝐷)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷))
2 opelco.1 . . 3 𝐴 ∈ V
3 opelco.2 . . 3 𝐵 ∈ V
42, 3brco 5202 . 2 (𝐴(𝐶𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵))
51, 4bitr3i 264 1 (⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷) ↔ ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 194  wa 382  wex 1694  wcel 1976  Vcvv 3172  cop 4130   class class class wbr 4577  ccom 5032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pr 4828
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-rab 2904  df-v 3174  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-sn 4125  df-pr 4127  df-op 4131  df-br 4578  df-opab 4638  df-co 5037
This theorem is referenced by:  dmcoss  5293  dmcosseq  5295  cotrg  5413  coiun  5548  co02  5552  coi1  5554  coass  5557  fmptco  6288  dftpos4  7235  fmptcof2  28645  cnvco1  30709  cnvco2  30710  txpss3v  30961  dffun10  30997  coiun1  36766
  Copyright terms: Public domain W3C validator