Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  orim1d Structured version   Visualization version   GIF version

Theorem orim1d 902
 Description: Disjoin antecedents and consequents in a deduction. (Contributed by NM, 23-Apr-1995.)
Hypothesis
Ref Expression
orim1d.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
orim1d (𝜑 → ((𝜓𝜃) → (𝜒𝜃)))

Proof of Theorem orim1d
StepHypRef Expression
1 orim1d.1 . 2 (𝜑 → (𝜓𝜒))
2 idd 24 . 2 (𝜑 → (𝜃𝜃))
31, 2orim12d 901 1 (𝜑 → ((𝜓𝜃) → (𝜒𝜃)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∨ wo 382 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385 This theorem is referenced by:  pm2.38  905  pm2.73  908  pm2.74  909  pm2.8  913  pm2.82  915  moeq3  3416  unss1  3815  ordtri2or2  5861  gchor  9487  relin01  10590  icombl  23378  ioombl  23379  coltr  25587  frgrregorufrg  27306  naim1  32509  onsucconni  32561  dnibndlem13  32605  mblfinlem2  33577  leat3  34900  meetat2  34902  paddss1  35421
 Copyright terms: Public domain W3C validator