Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmlasuc Structured version   Visualization version   GIF version

Theorem fmlasuc 32633
Description: The valid Godel formulas of height (𝑁 + 1), expressed by the valid Godel formulas of height 𝑁. (Contributed by AV, 20-Sep-2023.)
Assertion
Ref Expression
fmlasuc (𝑁 ∈ ω → (Fmla‘suc 𝑁) = ((Fmla‘𝑁) ∪ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)}))
Distinct variable group:   𝑢,𝑁,𝑣,𝑥,𝑖

Proof of Theorem fmlasuc
Dummy variables 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmlasuc0 32631 . 2 (𝑁 ∈ ω → (Fmla‘suc 𝑁) = ((Fmla‘𝑁) ∪ {𝑥 ∣ ∃𝑦 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑧)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦))}))
2 eqid 2821 . . . . . . . 8 (∅ Sat ∅) = (∅ Sat ∅)
32satf0op 32624 . . . . . . 7 (𝑁 ∈ ω → (𝑦 ∈ ((∅ Sat ∅)‘𝑁) ↔ ∃𝑧(𝑦 = ⟨𝑧, ∅⟩ ∧ ⟨𝑧, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))))
4 fveq2 6670 . . . . . . . . . . . 12 (𝑧 = 𝑤 → (1st𝑧) = (1st𝑤))
54oveq2d 7172 . . . . . . . . . . 11 (𝑧 = 𝑤 → ((1st𝑦)⊼𝑔(1st𝑧)) = ((1st𝑦)⊼𝑔(1st𝑤)))
65eqeq2d 2832 . . . . . . . . . 10 (𝑧 = 𝑤 → (𝑥 = ((1st𝑦)⊼𝑔(1st𝑧)) ↔ 𝑥 = ((1st𝑦)⊼𝑔(1st𝑤))))
76cbvrexvw 3450 . . . . . . . . 9 (∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑧)) ↔ ∃𝑤 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑤)))
87orbi1i 910 . . . . . . . 8 ((∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑧)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦)) ↔ (∃𝑤 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑤)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦)))
9 fmlafvel 32632 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ω → (𝑧 ∈ (Fmla‘𝑁) ↔ ⟨𝑧, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)))
109biimprd 250 . . . . . . . . . . . . . . 15 (𝑁 ∈ ω → (⟨𝑧, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁) → 𝑧 ∈ (Fmla‘𝑁)))
1110adantld 493 . . . . . . . . . . . . . 14 (𝑁 ∈ ω → ((𝑦 = ⟨𝑧, ∅⟩ ∧ ⟨𝑧, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)) → 𝑧 ∈ (Fmla‘𝑁)))
1211imp 409 . . . . . . . . . . . . 13 ((𝑁 ∈ ω ∧ (𝑦 = ⟨𝑧, ∅⟩ ∧ ⟨𝑧, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))) → 𝑧 ∈ (Fmla‘𝑁))
13 vex 3497 . . . . . . . . . . . . . . . 16 𝑧 ∈ V
14 0ex 5211 . . . . . . . . . . . . . . . 16 ∅ ∈ V
1513, 14op1std 7699 . . . . . . . . . . . . . . 15 (𝑦 = ⟨𝑧, ∅⟩ → (1st𝑦) = 𝑧)
1615eleq1d 2897 . . . . . . . . . . . . . 14 (𝑦 = ⟨𝑧, ∅⟩ → ((1st𝑦) ∈ (Fmla‘𝑁) ↔ 𝑧 ∈ (Fmla‘𝑁)))
1716ad2antrl 726 . . . . . . . . . . . . 13 ((𝑁 ∈ ω ∧ (𝑦 = ⟨𝑧, ∅⟩ ∧ ⟨𝑧, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))) → ((1st𝑦) ∈ (Fmla‘𝑁) ↔ 𝑧 ∈ (Fmla‘𝑁)))
1812, 17mpbird 259 . . . . . . . . . . . 12 ((𝑁 ∈ ω ∧ (𝑦 = ⟨𝑧, ∅⟩ ∧ ⟨𝑧, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))) → (1st𝑦) ∈ (Fmla‘𝑁))
19183adant3 1128 . . . . . . . . . . 11 ((𝑁 ∈ ω ∧ (𝑦 = ⟨𝑧, ∅⟩ ∧ ⟨𝑧, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)) ∧ (∃𝑤 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑤)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦))) → (1st𝑦) ∈ (Fmla‘𝑁))
20 oveq1 7163 . . . . . . . . . . . . . . 15 (𝑢 = (1st𝑦) → (𝑢𝑔𝑣) = ((1st𝑦)⊼𝑔𝑣))
2120eqeq2d 2832 . . . . . . . . . . . . . 14 (𝑢 = (1st𝑦) → (𝑥 = (𝑢𝑔𝑣) ↔ 𝑥 = ((1st𝑦)⊼𝑔𝑣)))
2221rexbidv 3297 . . . . . . . . . . . . 13 (𝑢 = (1st𝑦) → (∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ↔ ∃𝑣 ∈ (Fmla‘𝑁)𝑥 = ((1st𝑦)⊼𝑔𝑣)))
23 eqidd 2822 . . . . . . . . . . . . . . . 16 (𝑢 = (1st𝑦) → 𝑖 = 𝑖)
24 id 22 . . . . . . . . . . . . . . . 16 (𝑢 = (1st𝑦) → 𝑢 = (1st𝑦))
2523, 24goaleq12d 32598 . . . . . . . . . . . . . . 15 (𝑢 = (1st𝑦) → ∀𝑔𝑖𝑢 = ∀𝑔𝑖(1st𝑦))
2625eqeq2d 2832 . . . . . . . . . . . . . 14 (𝑢 = (1st𝑦) → (𝑥 = ∀𝑔𝑖𝑢𝑥 = ∀𝑔𝑖(1st𝑦)))
2726rexbidv 3297 . . . . . . . . . . . . 13 (𝑢 = (1st𝑦) → (∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢 ↔ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦)))
2822, 27orbi12d 915 . . . . . . . . . . . 12 (𝑢 = (1st𝑦) → ((∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ↔ (∃𝑣 ∈ (Fmla‘𝑁)𝑥 = ((1st𝑦)⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦))))
2928adantl 484 . . . . . . . . . . 11 (((𝑁 ∈ ω ∧ (𝑦 = ⟨𝑧, ∅⟩ ∧ ⟨𝑧, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)) ∧ (∃𝑤 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑤)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦))) ∧ 𝑢 = (1st𝑦)) → ((∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ↔ (∃𝑣 ∈ (Fmla‘𝑁)𝑥 = ((1st𝑦)⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦))))
302satf0op 32624 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ω → (𝑤 ∈ ((∅ Sat ∅)‘𝑁) ↔ ∃𝑦(𝑤 = ⟨𝑦, ∅⟩ ∧ ⟨𝑦, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))))
31 fmlafvel 32632 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ω → (𝑦 ∈ (Fmla‘𝑁) ↔ ⟨𝑦, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)))
3231biimprd 250 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ω → (⟨𝑦, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁) → 𝑦 ∈ (Fmla‘𝑁)))
3332adantld 493 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ω → ((𝑤 = ⟨𝑦, ∅⟩ ∧ ⟨𝑦, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)) → 𝑦 ∈ (Fmla‘𝑁)))
3433imp 409 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ω ∧ (𝑤 = ⟨𝑦, ∅⟩ ∧ ⟨𝑦, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))) → 𝑦 ∈ (Fmla‘𝑁))
35 vex 3497 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑦 ∈ V
3635, 14op1std 7699 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = ⟨𝑦, ∅⟩ → (1st𝑤) = 𝑦)
3736eleq1d 2897 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = ⟨𝑦, ∅⟩ → ((1st𝑤) ∈ (Fmla‘𝑁) ↔ 𝑦 ∈ (Fmla‘𝑁)))
3837ad2antrl 726 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ω ∧ (𝑤 = ⟨𝑦, ∅⟩ ∧ ⟨𝑦, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))) → ((1st𝑤) ∈ (Fmla‘𝑁) ↔ 𝑦 ∈ (Fmla‘𝑁)))
3934, 38mpbird 259 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ω ∧ (𝑤 = ⟨𝑦, ∅⟩ ∧ ⟨𝑦, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))) → (1st𝑤) ∈ (Fmla‘𝑁))
4039adantr 483 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ω ∧ (𝑤 = ⟨𝑦, ∅⟩ ∧ ⟨𝑦, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))) ∧ 𝑥 = (𝑧𝑔(1st𝑤))) → (1st𝑤) ∈ (Fmla‘𝑁))
41 oveq2 7164 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 = (1st𝑤) → (𝑧𝑔𝑣) = (𝑧𝑔(1st𝑤)))
4241eqeq2d 2832 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = (1st𝑤) → (𝑥 = (𝑧𝑔𝑣) ↔ 𝑥 = (𝑧𝑔(1st𝑤))))
4342adantl 484 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ω ∧ (𝑤 = ⟨𝑦, ∅⟩ ∧ ⟨𝑦, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))) ∧ 𝑥 = (𝑧𝑔(1st𝑤))) ∧ 𝑣 = (1st𝑤)) → (𝑥 = (𝑧𝑔𝑣) ↔ 𝑥 = (𝑧𝑔(1st𝑤))))
44 simpr 487 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ω ∧ (𝑤 = ⟨𝑦, ∅⟩ ∧ ⟨𝑦, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))) ∧ 𝑥 = (𝑧𝑔(1st𝑤))) → 𝑥 = (𝑧𝑔(1st𝑤)))
4540, 43, 44rspcedvd 3626 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ω ∧ (𝑤 = ⟨𝑦, ∅⟩ ∧ ⟨𝑦, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))) ∧ 𝑥 = (𝑧𝑔(1st𝑤))) → ∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑧𝑔𝑣))
4645exp31 422 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ω → ((𝑤 = ⟨𝑦, ∅⟩ ∧ ⟨𝑦, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)) → (𝑥 = (𝑧𝑔(1st𝑤)) → ∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑧𝑔𝑣))))
4746exlimdv 1934 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ω → (∃𝑦(𝑤 = ⟨𝑦, ∅⟩ ∧ ⟨𝑦, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)) → (𝑥 = (𝑧𝑔(1st𝑤)) → ∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑧𝑔𝑣))))
4830, 47sylbid 242 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ω → (𝑤 ∈ ((∅ Sat ∅)‘𝑁) → (𝑥 = (𝑧𝑔(1st𝑤)) → ∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑧𝑔𝑣))))
4948rexlimdv 3283 . . . . . . . . . . . . . . 15 (𝑁 ∈ ω → (∃𝑤 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = (𝑧𝑔(1st𝑤)) → ∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑧𝑔𝑣)))
5049adantr 483 . . . . . . . . . . . . . 14 ((𝑁 ∈ ω ∧ (𝑦 = ⟨𝑧, ∅⟩ ∧ ⟨𝑧, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))) → (∃𝑤 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = (𝑧𝑔(1st𝑤)) → ∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑧𝑔𝑣)))
5115oveq1d 7171 . . . . . . . . . . . . . . . . . 18 (𝑦 = ⟨𝑧, ∅⟩ → ((1st𝑦)⊼𝑔(1st𝑤)) = (𝑧𝑔(1st𝑤)))
5251eqeq2d 2832 . . . . . . . . . . . . . . . . 17 (𝑦 = ⟨𝑧, ∅⟩ → (𝑥 = ((1st𝑦)⊼𝑔(1st𝑤)) ↔ 𝑥 = (𝑧𝑔(1st𝑤))))
5352rexbidv 3297 . . . . . . . . . . . . . . . 16 (𝑦 = ⟨𝑧, ∅⟩ → (∃𝑤 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑤)) ↔ ∃𝑤 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = (𝑧𝑔(1st𝑤))))
5415oveq1d 7171 . . . . . . . . . . . . . . . . . 18 (𝑦 = ⟨𝑧, ∅⟩ → ((1st𝑦)⊼𝑔𝑣) = (𝑧𝑔𝑣))
5554eqeq2d 2832 . . . . . . . . . . . . . . . . 17 (𝑦 = ⟨𝑧, ∅⟩ → (𝑥 = ((1st𝑦)⊼𝑔𝑣) ↔ 𝑥 = (𝑧𝑔𝑣)))
5655rexbidv 3297 . . . . . . . . . . . . . . . 16 (𝑦 = ⟨𝑧, ∅⟩ → (∃𝑣 ∈ (Fmla‘𝑁)𝑥 = ((1st𝑦)⊼𝑔𝑣) ↔ ∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑧𝑔𝑣)))
5753, 56imbi12d 347 . . . . . . . . . . . . . . 15 (𝑦 = ⟨𝑧, ∅⟩ → ((∃𝑤 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑤)) → ∃𝑣 ∈ (Fmla‘𝑁)𝑥 = ((1st𝑦)⊼𝑔𝑣)) ↔ (∃𝑤 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = (𝑧𝑔(1st𝑤)) → ∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑧𝑔𝑣))))
5857ad2antrl 726 . . . . . . . . . . . . . 14 ((𝑁 ∈ ω ∧ (𝑦 = ⟨𝑧, ∅⟩ ∧ ⟨𝑧, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))) → ((∃𝑤 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑤)) → ∃𝑣 ∈ (Fmla‘𝑁)𝑥 = ((1st𝑦)⊼𝑔𝑣)) ↔ (∃𝑤 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = (𝑧𝑔(1st𝑤)) → ∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑧𝑔𝑣))))
5950, 58mpbird 259 . . . . . . . . . . . . 13 ((𝑁 ∈ ω ∧ (𝑦 = ⟨𝑧, ∅⟩ ∧ ⟨𝑧, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))) → (∃𝑤 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑤)) → ∃𝑣 ∈ (Fmla‘𝑁)𝑥 = ((1st𝑦)⊼𝑔𝑣)))
6059orim1d 962 . . . . . . . . . . . 12 ((𝑁 ∈ ω ∧ (𝑦 = ⟨𝑧, ∅⟩ ∧ ⟨𝑧, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))) → ((∃𝑤 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑤)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦)) → (∃𝑣 ∈ (Fmla‘𝑁)𝑥 = ((1st𝑦)⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦))))
61603impia 1113 . . . . . . . . . . 11 ((𝑁 ∈ ω ∧ (𝑦 = ⟨𝑧, ∅⟩ ∧ ⟨𝑧, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)) ∧ (∃𝑤 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑤)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦))) → (∃𝑣 ∈ (Fmla‘𝑁)𝑥 = ((1st𝑦)⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦)))
6219, 29, 61rspcedvd 3626 . . . . . . . . . 10 ((𝑁 ∈ ω ∧ (𝑦 = ⟨𝑧, ∅⟩ ∧ ⟨𝑧, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)) ∧ (∃𝑤 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑤)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦))) → ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))
63623exp 1115 . . . . . . . . 9 (𝑁 ∈ ω → ((𝑦 = ⟨𝑧, ∅⟩ ∧ ⟨𝑧, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)) → ((∃𝑤 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑤)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦)) → ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))))
6463exlimdv 1934 . . . . . . . 8 (𝑁 ∈ ω → (∃𝑧(𝑦 = ⟨𝑧, ∅⟩ ∧ ⟨𝑧, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)) → ((∃𝑤 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑤)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦)) → ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))))
658, 64syl7bi 257 . . . . . . 7 (𝑁 ∈ ω → (∃𝑧(𝑦 = ⟨𝑧, ∅⟩ ∧ ⟨𝑧, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)) → ((∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑧)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦)) → ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))))
663, 65sylbid 242 . . . . . 6 (𝑁 ∈ ω → (𝑦 ∈ ((∅ Sat ∅)‘𝑁) → ((∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑧)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦)) → ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))))
6766rexlimdv 3283 . . . . 5 (𝑁 ∈ ω → (∃𝑦 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑧)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦)) → ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)))
68 fmlafvel 32632 . . . . . . . . 9 (𝑁 ∈ ω → (𝑢 ∈ (Fmla‘𝑁) ↔ ⟨𝑢, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)))
6968biimpa 479 . . . . . . . 8 ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) → ⟨𝑢, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))
7069adantr 483 . . . . . . 7 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ (∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)) → ⟨𝑢, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))
71 vex 3497 . . . . . . . . . . . . 13 𝑢 ∈ V
7271, 14op1std 7699 . . . . . . . . . . . 12 (𝑦 = ⟨𝑢, ∅⟩ → (1st𝑦) = 𝑢)
7372oveq1d 7171 . . . . . . . . . . 11 (𝑦 = ⟨𝑢, ∅⟩ → ((1st𝑦)⊼𝑔(1st𝑧)) = (𝑢𝑔(1st𝑧)))
7473eqeq2d 2832 . . . . . . . . . 10 (𝑦 = ⟨𝑢, ∅⟩ → (𝑥 = ((1st𝑦)⊼𝑔(1st𝑧)) ↔ 𝑥 = (𝑢𝑔(1st𝑧))))
7574rexbidv 3297 . . . . . . . . 9 (𝑦 = ⟨𝑢, ∅⟩ → (∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑧)) ↔ ∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = (𝑢𝑔(1st𝑧))))
76 eqidd 2822 . . . . . . . . . . . 12 (𝑦 = ⟨𝑢, ∅⟩ → 𝑖 = 𝑖)
7776, 72goaleq12d 32598 . . . . . . . . . . 11 (𝑦 = ⟨𝑢, ∅⟩ → ∀𝑔𝑖(1st𝑦) = ∀𝑔𝑖𝑢)
7877eqeq2d 2832 . . . . . . . . . 10 (𝑦 = ⟨𝑢, ∅⟩ → (𝑥 = ∀𝑔𝑖(1st𝑦) ↔ 𝑥 = ∀𝑔𝑖𝑢))
7978rexbidv 3297 . . . . . . . . 9 (𝑦 = ⟨𝑢, ∅⟩ → (∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦) ↔ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))
8075, 79orbi12d 915 . . . . . . . 8 (𝑦 = ⟨𝑢, ∅⟩ → ((∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑧)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦)) ↔ (∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = (𝑢𝑔(1st𝑧)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)))
8180adantl 484 . . . . . . 7 ((((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ (∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)) ∧ 𝑦 = ⟨𝑢, ∅⟩) → ((∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑧)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦)) ↔ (∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = (𝑢𝑔(1st𝑧)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)))
82 fmlafvel 32632 . . . . . . . . . . . . . . 15 (𝑁 ∈ ω → (𝑣 ∈ (Fmla‘𝑁) ↔ ⟨𝑣, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)))
8382biimpd 231 . . . . . . . . . . . . . 14 (𝑁 ∈ ω → (𝑣 ∈ (Fmla‘𝑁) → ⟨𝑣, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)))
8483adantr 483 . . . . . . . . . . . . 13 ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) → (𝑣 ∈ (Fmla‘𝑁) → ⟨𝑣, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁)))
8584imp 409 . . . . . . . . . . . 12 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ (Fmla‘𝑁)) → ⟨𝑣, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))
8685adantr 483 . . . . . . . . . . 11 ((((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ (Fmla‘𝑁)) ∧ 𝑥 = (𝑢𝑔𝑣)) → ⟨𝑣, ∅⟩ ∈ ((∅ Sat ∅)‘𝑁))
87 vex 3497 . . . . . . . . . . . . . . 15 𝑣 ∈ V
8887, 14op1std 7699 . . . . . . . . . . . . . 14 (𝑧 = ⟨𝑣, ∅⟩ → (1st𝑧) = 𝑣)
8988oveq2d 7172 . . . . . . . . . . . . 13 (𝑧 = ⟨𝑣, ∅⟩ → (𝑢𝑔(1st𝑧)) = (𝑢𝑔𝑣))
9089eqeq2d 2832 . . . . . . . . . . . 12 (𝑧 = ⟨𝑣, ∅⟩ → (𝑥 = (𝑢𝑔(1st𝑧)) ↔ 𝑥 = (𝑢𝑔𝑣)))
9190adantl 484 . . . . . . . . . . 11 (((((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ (Fmla‘𝑁)) ∧ 𝑥 = (𝑢𝑔𝑣)) ∧ 𝑧 = ⟨𝑣, ∅⟩) → (𝑥 = (𝑢𝑔(1st𝑧)) ↔ 𝑥 = (𝑢𝑔𝑣)))
92 simpr 487 . . . . . . . . . . 11 ((((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ (Fmla‘𝑁)) ∧ 𝑥 = (𝑢𝑔𝑣)) → 𝑥 = (𝑢𝑔𝑣))
9386, 91, 92rspcedvd 3626 . . . . . . . . . 10 ((((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ 𝑣 ∈ (Fmla‘𝑁)) ∧ 𝑥 = (𝑢𝑔𝑣)) → ∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = (𝑢𝑔(1st𝑧)))
9493rexlimdva2 3287 . . . . . . . . 9 ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) → (∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) → ∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = (𝑢𝑔(1st𝑧))))
9594orim1d 962 . . . . . . . 8 ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) → ((∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) → (∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = (𝑢𝑔(1st𝑧)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)))
9695imp 409 . . . . . . 7 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ (∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)) → (∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = (𝑢𝑔(1st𝑧)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))
9770, 81, 96rspcedvd 3626 . . . . . 6 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑁)) ∧ (∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)) → ∃𝑦 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑧)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦)))
9897rexlimdva2 3287 . . . . 5 (𝑁 ∈ ω → (∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) → ∃𝑦 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑧)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦))))
9967, 98impbid 214 . . . 4 (𝑁 ∈ ω → (∃𝑦 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑧)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦)) ↔ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)))
10099abbidv 2885 . . 3 (𝑁 ∈ ω → {𝑥 ∣ ∃𝑦 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑧)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦))} = {𝑥 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)})
101100uneq2d 4139 . 2 (𝑁 ∈ ω → ((Fmla‘𝑁) ∪ {𝑥 ∣ ∃𝑦 ∈ ((∅ Sat ∅)‘𝑁)(∃𝑧 ∈ ((∅ Sat ∅)‘𝑁)𝑥 = ((1st𝑦)⊼𝑔(1st𝑧)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑦))}) = ((Fmla‘𝑁) ∪ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)}))
1021, 101eqtrd 2856 1 (𝑁 ∈ ω → (Fmla‘suc 𝑁) = ((Fmla‘𝑁) ∪ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wex 1780  wcel 2114  {cab 2799  wrex 3139  cun 3934  c0 4291  cop 4573  suc csuc 6193  cfv 6355  (class class class)co 7156  ωcom 7580  1st c1st 7687  𝑔cgna 32581  𝑔cgol 32582   Sat csat 32583  Fmlacfmla 32584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-map 8408  df-goel 32587  df-goal 32589  df-sat 32590  df-fmla 32592
This theorem is referenced by:  fmla1  32634  isfmlasuc  32635  fmlasssuc  32636  fmlaomn0  32637
  Copyright terms: Public domain W3C validator