Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meetat2 Structured version   Visualization version   GIF version

Theorem meetat2 35079
Description: The meet of any element with an atom is either the atom or zero. (Contributed by NM, 30-Aug-2012.)
Hypotheses
Ref Expression
m.b 𝐵 = (Base‘𝐾)
m.m = (meet‘𝐾)
m.z 0 = (0.‘𝐾)
m.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
meetat2 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑃𝐴) → ((𝑋 𝑃) ∈ 𝐴 ∨ (𝑋 𝑃) = 0 ))

Proof of Theorem meetat2
StepHypRef Expression
1 m.b . . 3 𝐵 = (Base‘𝐾)
2 m.m . . 3 = (meet‘𝐾)
3 m.z . . 3 0 = (0.‘𝐾)
4 m.a . . 3 𝐴 = (Atoms‘𝐾)
51, 2, 3, 4meetat 35078 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑃𝐴) → ((𝑋 𝑃) = 𝑃 ∨ (𝑋 𝑃) = 0 ))
6 eleq1a 2826 . . . 4 (𝑃𝐴 → ((𝑋 𝑃) = 𝑃 → (𝑋 𝑃) ∈ 𝐴))
763ad2ant3 1129 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑃𝐴) → ((𝑋 𝑃) = 𝑃 → (𝑋 𝑃) ∈ 𝐴))
87orim1d 920 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑃𝐴) → (((𝑋 𝑃) = 𝑃 ∨ (𝑋 𝑃) = 0 ) → ((𝑋 𝑃) ∈ 𝐴 ∨ (𝑋 𝑃) = 0 )))
95, 8mpd 15 1 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑃𝐴) → ((𝑋 𝑃) ∈ 𝐴 ∨ (𝑋 𝑃) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  w3a 1072   = wceq 1624  wcel 2131  cfv 6041  (class class class)co 6805  Basecbs 16051  meetcmee 17138  0.cp0 17230  OLcol 34956  Atomscatm 35045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-ral 3047  df-rex 3048  df-reu 3049  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-op 4320  df-uni 4581  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-id 5166  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-preset 17121  df-poset 17139  df-plt 17151  df-lub 17167  df-glb 17168  df-join 17169  df-meet 17170  df-p0 17232  df-lat 17239  df-oposet 34958  df-ol 34960  df-covers 35048  df-ats 35049
This theorem is referenced by:  2at0mat0  35306  atmod1i1m  35639
  Copyright terms: Public domain W3C validator