Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mblfinlem2 Structured version   Visualization version   GIF version

Theorem mblfinlem2 33427
Description: Lemma for ismblfin 33430, effectively one direction of the same fact for open sets, made necessary by Viaclovsky's slightly different defintion of outer measure. Note that unlike the main theorem, this holds for sets of infinite measure. (Contributed by Brendan Leahy, 21-Feb-2018.) (Revised by Brendan Leahy, 13-Jul-2018.)
Assertion
Ref Expression
mblfinlem2 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴𝑀 < (vol*‘𝑠)))
Distinct variable groups:   𝐴,𝑠   𝑀,𝑠

Proof of Theorem mblfinlem2
Dummy variables 𝑎 𝑏 𝑐 𝑓 𝑚 𝑛 𝑝 𝑡 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 retop 22559 . . . 4 (topGen‘ran (,)) ∈ Top
2 0cld 20836 . . . 4 ((topGen‘ran (,)) ∈ Top → ∅ ∈ (Clsd‘(topGen‘ran (,))))
31, 2ax-mp 5 . . 3 ∅ ∈ (Clsd‘(topGen‘ran (,)))
4 simpl3 1065 . . . . 5 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝐴 = ∅) → 𝑀 < (vol*‘𝐴))
5 fveq2 6189 . . . . . 6 (𝐴 = ∅ → (vol*‘𝐴) = (vol*‘∅))
65adantl 482 . . . . 5 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝐴 = ∅) → (vol*‘𝐴) = (vol*‘∅))
74, 6breqtrd 4677 . . . 4 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝐴 = ∅) → 𝑀 < (vol*‘∅))
8 0ss 3970 . . . 4 ∅ ⊆ 𝐴
97, 8jctil 560 . . 3 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝐴 = ∅) → (∅ ⊆ 𝐴𝑀 < (vol*‘∅)))
10 sseq1 3624 . . . . 5 (𝑠 = ∅ → (𝑠𝐴 ↔ ∅ ⊆ 𝐴))
11 fveq2 6189 . . . . . 6 (𝑠 = ∅ → (vol*‘𝑠) = (vol*‘∅))
1211breq2d 4663 . . . . 5 (𝑠 = ∅ → (𝑀 < (vol*‘𝑠) ↔ 𝑀 < (vol*‘∅)))
1310, 12anbi12d 747 . . . 4 (𝑠 = ∅ → ((𝑠𝐴𝑀 < (vol*‘𝑠)) ↔ (∅ ⊆ 𝐴𝑀 < (vol*‘∅))))
1413rspcev 3307 . . 3 ((∅ ∈ (Clsd‘(topGen‘ran (,))) ∧ (∅ ⊆ 𝐴𝑀 < (vol*‘∅))) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴𝑀 < (vol*‘𝑠)))
153, 9, 14sylancr 695 . 2 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝐴 = ∅) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴𝑀 < (vol*‘𝑠)))
16 mblfinlem1 33426 . . . 4 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝐴 ≠ ∅) → ∃𝑓 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)})
17163ad2antl1 1222 . . 3 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝐴 ≠ ∅) → ∃𝑓 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)})
18 simpl3 1065 . . . . . . . . 9 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → 𝑀 < (vol*‘𝐴))
19 f1ofo 6142 . . . . . . . . . . . . . . 15 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → 𝑓:ℕ–onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)})
20 rnco2 5640 . . . . . . . . . . . . . . . . 17 ran ([,] ∘ 𝑓) = ([,] “ ran 𝑓)
21 forn 6116 . . . . . . . . . . . . . . . . . 18 (𝑓:ℕ–onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ran 𝑓 = {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)})
2221imaeq2d 5464 . . . . . . . . . . . . . . . . 17 (𝑓:ℕ–onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ([,] “ ran 𝑓) = ([,] “ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}))
2320, 22syl5eq 2667 . . . . . . . . . . . . . . . 16 (𝑓:ℕ–onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ran ([,] ∘ 𝑓) = ([,] “ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}))
2423unieqd 4444 . . . . . . . . . . . . . . 15 (𝑓:ℕ–onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ran ([,] ∘ 𝑓) = ([,] “ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}))
2519, 24syl 17 . . . . . . . . . . . . . 14 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ran ([,] ∘ 𝑓) = ([,] “ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}))
2625adantl 482 . . . . . . . . . . . . 13 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ran ([,] ∘ 𝑓) = ([,] “ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}))
27 oveq1 6654 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑢 → (𝑥 / (2↑𝑦)) = (𝑢 / (2↑𝑦)))
28 oveq1 6654 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑢 → (𝑥 + 1) = (𝑢 + 1))
2928oveq1d 6662 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑢 → ((𝑥 + 1) / (2↑𝑦)) = ((𝑢 + 1) / (2↑𝑦)))
3027, 29opeq12d 4408 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑢 → ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩ = ⟨(𝑢 / (2↑𝑦)), ((𝑢 + 1) / (2↑𝑦))⟩)
31 oveq2 6655 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑣 → (2↑𝑦) = (2↑𝑣))
3231oveq2d 6663 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑣 → (𝑢 / (2↑𝑦)) = (𝑢 / (2↑𝑣)))
3331oveq2d 6663 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑣 → ((𝑢 + 1) / (2↑𝑦)) = ((𝑢 + 1) / (2↑𝑣)))
3432, 33opeq12d 4408 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑣 → ⟨(𝑢 / (2↑𝑦)), ((𝑢 + 1) / (2↑𝑦))⟩ = ⟨(𝑢 / (2↑𝑣)), ((𝑢 + 1) / (2↑𝑣))⟩)
3530, 34cbvmpt2v 6732 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) = (𝑢 ∈ ℤ, 𝑣 ∈ ℕ0 ↦ ⟨(𝑢 / (2↑𝑣)), ((𝑢 + 1) / (2↑𝑣))⟩)
36 fveq2 6189 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑧 → ([,]‘𝑎) = ([,]‘𝑧))
3736sseq1d 3630 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑧 → (([,]‘𝑎) ⊆ ([,]‘𝑐) ↔ ([,]‘𝑧) ⊆ ([,]‘𝑐)))
38 eqeq1 2625 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑧 → (𝑎 = 𝑐𝑧 = 𝑐))
3937, 38imbi12d 334 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑧 → ((([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐) ↔ (([,]‘𝑧) ⊆ ([,]‘𝑐) → 𝑧 = 𝑐)))
4039ralbidv 2985 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑧 → (∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐) ↔ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑧) ⊆ ([,]‘𝑐) → 𝑧 = 𝑐)))
4140cbvrabv 3197 . . . . . . . . . . . . . . 15 {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} = {𝑧 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑧) ⊆ ([,]‘𝑐) → 𝑧 = 𝑐)}
42 ssrab2 3685 . . . . . . . . . . . . . . . 16 {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ⊆ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
4342a1i 11 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) → {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ⊆ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩))
4435, 41, 43dyadmbllem 23361 . . . . . . . . . . . . . 14 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) → ([,] “ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴}) = ([,] “ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}))
4544adantr 481 . . . . . . . . . . . . 13 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ([,] “ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴}) = ([,] “ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}))
4626, 45eqtr4d 2658 . . . . . . . . . . . 12 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ran ([,] ∘ 𝑓) = ([,] “ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴}))
47 opnmbllem0 33425 . . . . . . . . . . . . . 14 (𝐴 ∈ (topGen‘ran (,)) → ([,] “ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴}) = 𝐴)
48473ad2ant1 1081 . . . . . . . . . . . . 13 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) → ([,] “ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴}) = 𝐴)
4948adantr 481 . . . . . . . . . . . 12 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ([,] “ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴}) = 𝐴)
5046, 49eqtrd 2655 . . . . . . . . . . 11 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ran ([,] ∘ 𝑓) = 𝐴)
5150fveq2d 6193 . . . . . . . . . 10 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → (vol*‘ ran ([,] ∘ 𝑓)) = (vol*‘𝐴))
52 f1of 6135 . . . . . . . . . . . . 13 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → 𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)})
53 ssrab2 3685 . . . . . . . . . . . . . 14 {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ⊆ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴}
5435dyadf 23353 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩):(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ))
55 frn 6051 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩):(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ)) → ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ⊆ ( ≤ ∩ (ℝ × ℝ)))
5654, 55ax-mp 5 . . . . . . . . . . . . . . 15 ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ⊆ ( ≤ ∩ (ℝ × ℝ))
5742, 56sstri 3610 . . . . . . . . . . . . . 14 {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ⊆ ( ≤ ∩ (ℝ × ℝ))
5853, 57sstri 3610 . . . . . . . . . . . . 13 {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ⊆ ( ≤ ∩ (ℝ × ℝ))
59 fss 6054 . . . . . . . . . . . . 13 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ⊆ ( ≤ ∩ (ℝ × ℝ))) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
6052, 58, 59sylancl 694 . . . . . . . . . . . 12 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
6153, 42sstri 3610 . . . . . . . . . . . . . . . . . . . 20 {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ⊆ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
62 ffvelrn 6355 . . . . . . . . . . . . . . . . . . . 20 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → (𝑓𝑚) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)})
6361, 62sseldi 3599 . . . . . . . . . . . . . . . . . . 19 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → (𝑓𝑚) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩))
6463adantrr 753 . . . . . . . . . . . . . . . . . 18 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → (𝑓𝑚) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩))
65 ffvelrn 6355 . . . . . . . . . . . . . . . . . . . 20 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → (𝑓𝑧) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)})
6661, 65sseldi 3599 . . . . . . . . . . . . . . . . . . 19 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → (𝑓𝑧) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩))
6766adantrl 752 . . . . . . . . . . . . . . . . . 18 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → (𝑓𝑧) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩))
6835dyaddisj 23358 . . . . . . . . . . . . . . . . . 18 (((𝑓𝑚) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∧ (𝑓𝑧) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)) → (([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) ∨ ([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚)) ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅))
6964, 67, 68syl2anc 693 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → (([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) ∨ ([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚)) ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅))
7052, 69sylan 488 . . . . . . . . . . . . . . . 16 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → (([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) ∨ ([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚)) ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅))
71 df-3or 1038 . . . . . . . . . . . . . . . 16 ((([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) ∨ ([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚)) ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅) ↔ ((([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) ∨ ([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚))) ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅))
7270, 71sylib 208 . . . . . . . . . . . . . . 15 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) ∨ ([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚))) ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅))
73 elrabi 3357 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓𝑧) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → (𝑓𝑧) ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴})
74 fveq2 6189 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 = (𝑓𝑚) → ([,]‘𝑎) = ([,]‘(𝑓𝑚)))
7574sseq1d 3630 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 = (𝑓𝑚) → (([,]‘𝑎) ⊆ ([,]‘𝑐) ↔ ([,]‘(𝑓𝑚)) ⊆ ([,]‘𝑐)))
76 eqeq1 2625 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 = (𝑓𝑚) → (𝑎 = 𝑐 ↔ (𝑓𝑚) = 𝑐))
7775, 76imbi12d 334 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 = (𝑓𝑚) → ((([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐) ↔ (([,]‘(𝑓𝑚)) ⊆ ([,]‘𝑐) → (𝑓𝑚) = 𝑐)))
7877ralbidv 2985 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 = (𝑓𝑚) → (∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐) ↔ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘(𝑓𝑚)) ⊆ ([,]‘𝑐) → (𝑓𝑚) = 𝑐)))
7978elrab 3361 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓𝑚) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ↔ ((𝑓𝑚) ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∧ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘(𝑓𝑚)) ⊆ ([,]‘𝑐) → (𝑓𝑚) = 𝑐)))
8079simprbi 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓𝑚) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘(𝑓𝑚)) ⊆ ([,]‘𝑐) → (𝑓𝑚) = 𝑐))
81 fveq2 6189 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑐 = (𝑓𝑧) → ([,]‘𝑐) = ([,]‘(𝑓𝑧)))
8281sseq2d 3631 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐 = (𝑓𝑧) → (([,]‘(𝑓𝑚)) ⊆ ([,]‘𝑐) ↔ ([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧))))
83 eqeq2 2632 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐 = (𝑓𝑧) → ((𝑓𝑚) = 𝑐 ↔ (𝑓𝑚) = (𝑓𝑧)))
8482, 83imbi12d 334 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑐 = (𝑓𝑧) → ((([,]‘(𝑓𝑚)) ⊆ ([,]‘𝑐) → (𝑓𝑚) = 𝑐) ↔ (([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) → (𝑓𝑚) = (𝑓𝑧))))
8584rspcva 3305 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑓𝑧) ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∧ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘(𝑓𝑚)) ⊆ ([,]‘𝑐) → (𝑓𝑚) = 𝑐)) → (([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) → (𝑓𝑚) = (𝑓𝑧)))
8673, 80, 85syl2anr 495 . . . . . . . . . . . . . . . . . . . . 21 (((𝑓𝑚) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑓𝑧) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → (([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) → (𝑓𝑚) = (𝑓𝑧)))
87 elrabi 3357 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓𝑚) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → (𝑓𝑚) ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴})
88 fveq2 6189 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑎 = (𝑓𝑧) → ([,]‘𝑎) = ([,]‘(𝑓𝑧)))
8988sseq1d 3630 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 = (𝑓𝑧) → (([,]‘𝑎) ⊆ ([,]‘𝑐) ↔ ([,]‘(𝑓𝑧)) ⊆ ([,]‘𝑐)))
90 eqeq1 2625 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 = (𝑓𝑧) → (𝑎 = 𝑐 ↔ (𝑓𝑧) = 𝑐))
9189, 90imbi12d 334 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 = (𝑓𝑧) → ((([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐) ↔ (([,]‘(𝑓𝑧)) ⊆ ([,]‘𝑐) → (𝑓𝑧) = 𝑐)))
9291ralbidv 2985 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 = (𝑓𝑧) → (∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐) ↔ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘(𝑓𝑧)) ⊆ ([,]‘𝑐) → (𝑓𝑧) = 𝑐)))
9392elrab 3361 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓𝑧) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ↔ ((𝑓𝑧) ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∧ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘(𝑓𝑧)) ⊆ ([,]‘𝑐) → (𝑓𝑧) = 𝑐)))
9493simprbi 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓𝑧) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘(𝑓𝑧)) ⊆ ([,]‘𝑐) → (𝑓𝑧) = 𝑐))
95 fveq2 6189 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑐 = (𝑓𝑚) → ([,]‘𝑐) = ([,]‘(𝑓𝑚)))
9695sseq2d 3631 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑐 = (𝑓𝑚) → (([,]‘(𝑓𝑧)) ⊆ ([,]‘𝑐) ↔ ([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚))))
97 eqeq2 2632 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑐 = (𝑓𝑚) → ((𝑓𝑧) = 𝑐 ↔ (𝑓𝑧) = (𝑓𝑚)))
9896, 97imbi12d 334 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐 = (𝑓𝑚) → ((([,]‘(𝑓𝑧)) ⊆ ([,]‘𝑐) → (𝑓𝑧) = 𝑐) ↔ (([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚)) → (𝑓𝑧) = (𝑓𝑚))))
9998rspcva 3305 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑓𝑚) ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∧ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘(𝑓𝑧)) ⊆ ([,]‘𝑐) → (𝑓𝑧) = 𝑐)) → (([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚)) → (𝑓𝑧) = (𝑓𝑚)))
10087, 94, 99syl2an 494 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑓𝑚) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑓𝑧) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → (([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚)) → (𝑓𝑧) = (𝑓𝑚)))
101 eqcom 2628 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓𝑧) = (𝑓𝑚) ↔ (𝑓𝑚) = (𝑓𝑧))
102100, 101syl6ib 241 . . . . . . . . . . . . . . . . . . . . 21 (((𝑓𝑚) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑓𝑧) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → (([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚)) → (𝑓𝑚) = (𝑓𝑧)))
10386, 102jaod 395 . . . . . . . . . . . . . . . . . . . 20 (((𝑓𝑚) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑓𝑧) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ((([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) ∨ ([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚))) → (𝑓𝑚) = (𝑓𝑧)))
10462, 65, 103syl2an 494 . . . . . . . . . . . . . . . . . . 19 (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) ∧ (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ)) → ((([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) ∨ ([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚))) → (𝑓𝑚) = (𝑓𝑧)))
105104anandis 873 . . . . . . . . . . . . . . . . . 18 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) ∨ ([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚))) → (𝑓𝑚) = (𝑓𝑧)))
10652, 105sylan 488 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) ∨ ([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚))) → (𝑓𝑚) = (𝑓𝑧)))
107 f1of1 6134 . . . . . . . . . . . . . . . . . 18 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → 𝑓:ℕ–1-1→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)})
108 f1veqaeq 6511 . . . . . . . . . . . . . . . . . 18 ((𝑓:ℕ–1-1→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((𝑓𝑚) = (𝑓𝑧) → 𝑚 = 𝑧))
109107, 108sylan 488 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((𝑓𝑚) = (𝑓𝑧) → 𝑚 = 𝑧))
110106, 109syld 47 . . . . . . . . . . . . . . . 16 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) ∨ ([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚))) → 𝑚 = 𝑧))
111110orim1d 884 . . . . . . . . . . . . . . 15 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → (((([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) ∨ ([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚))) ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅) → (𝑚 = 𝑧 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅)))
11272, 111mpd 15 . . . . . . . . . . . . . 14 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → (𝑚 = 𝑧 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅))
113112ralrimivva 2970 . . . . . . . . . . . . 13 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ∀𝑚 ∈ ℕ ∀𝑧 ∈ ℕ (𝑚 = 𝑧 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅))
114 eqeq1 2625 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑧 → (𝑚 = 𝑝𝑧 = 𝑝))
115 fveq2 6189 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑧 → (𝑓𝑚) = (𝑓𝑧))
116115fveq2d 6193 . . . . . . . . . . . . . . . . . . 19 (𝑚 = 𝑧 → ((,)‘(𝑓𝑚)) = ((,)‘(𝑓𝑧)))
117116ineq1d 3811 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑧 → (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑝))) = (((,)‘(𝑓𝑧)) ∩ ((,)‘(𝑓𝑝))))
118117eqeq1d 2623 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑧 → ((((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑝))) = ∅ ↔ (((,)‘(𝑓𝑧)) ∩ ((,)‘(𝑓𝑝))) = ∅))
119114, 118orbi12d 746 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑧 → ((𝑚 = 𝑝 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑝))) = ∅) ↔ (𝑧 = 𝑝 ∨ (((,)‘(𝑓𝑧)) ∩ ((,)‘(𝑓𝑝))) = ∅)))
120119ralbidv 2985 . . . . . . . . . . . . . . 15 (𝑚 = 𝑧 → (∀𝑝 ∈ ℕ (𝑚 = 𝑝 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑝))) = ∅) ↔ ∀𝑝 ∈ ℕ (𝑧 = 𝑝 ∨ (((,)‘(𝑓𝑧)) ∩ ((,)‘(𝑓𝑝))) = ∅)))
121120cbvralv 3169 . . . . . . . . . . . . . 14 (∀𝑚 ∈ ℕ ∀𝑝 ∈ ℕ (𝑚 = 𝑝 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑝))) = ∅) ↔ ∀𝑧 ∈ ℕ ∀𝑝 ∈ ℕ (𝑧 = 𝑝 ∨ (((,)‘(𝑓𝑧)) ∩ ((,)‘(𝑓𝑝))) = ∅))
122 eqeq2 2632 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑝 → (𝑚 = 𝑧𝑚 = 𝑝))
123 fveq2 6189 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑝 → (𝑓𝑧) = (𝑓𝑝))
124123fveq2d 6193 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑝 → ((,)‘(𝑓𝑧)) = ((,)‘(𝑓𝑝)))
125124ineq2d 3812 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑝 → (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑝))))
126125eqeq1d 2623 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑝 → ((((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅ ↔ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑝))) = ∅))
127122, 126orbi12d 746 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑝 → ((𝑚 = 𝑧 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅) ↔ (𝑚 = 𝑝 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑝))) = ∅)))
128127cbvralv 3169 . . . . . . . . . . . . . . 15 (∀𝑧 ∈ ℕ (𝑚 = 𝑧 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅) ↔ ∀𝑝 ∈ ℕ (𝑚 = 𝑝 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑝))) = ∅))
129128ralbii 2979 . . . . . . . . . . . . . 14 (∀𝑚 ∈ ℕ ∀𝑧 ∈ ℕ (𝑚 = 𝑧 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅) ↔ ∀𝑚 ∈ ℕ ∀𝑝 ∈ ℕ (𝑚 = 𝑝 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑝))) = ∅))
130124disjor 4632 . . . . . . . . . . . . . 14 (Disj 𝑧 ∈ ℕ ((,)‘(𝑓𝑧)) ↔ ∀𝑧 ∈ ℕ ∀𝑝 ∈ ℕ (𝑧 = 𝑝 ∨ (((,)‘(𝑓𝑧)) ∩ ((,)‘(𝑓𝑝))) = ∅))
131121, 129, 1303bitr4ri 293 . . . . . . . . . . . . 13 (Disj 𝑧 ∈ ℕ ((,)‘(𝑓𝑧)) ↔ ∀𝑚 ∈ ℕ ∀𝑧 ∈ ℕ (𝑚 = 𝑧 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅))
132113, 131sylibr 224 . . . . . . . . . . . 12 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → Disj 𝑧 ∈ ℕ ((,)‘(𝑓𝑧)))
133 eqid 2621 . . . . . . . . . . . 12 seq1( + , ((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − ) ∘ 𝑓))
13460, 132, 133uniiccvol 23342 . . . . . . . . . . 11 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → (vol*‘ ran ([,] ∘ 𝑓)) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
135134adantl 482 . . . . . . . . . 10 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → (vol*‘ ran ([,] ∘ 𝑓)) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
13651, 135eqtr3d 2657 . . . . . . . . 9 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → (vol*‘𝐴) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
13718, 136breqtrd 4677 . . . . . . . 8 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → 𝑀 < sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
138 absf 14071 . . . . . . . . . . . 12 abs:ℂ⟶ℝ
139 subf 10280 . . . . . . . . . . . 12 − :(ℂ × ℂ)⟶ℂ
140 fco 6056 . . . . . . . . . . . 12 ((abs:ℂ⟶ℝ ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ)
141138, 139, 140mp2an 708 . . . . . . . . . . 11 (abs ∘ − ):(ℂ × ℂ)⟶ℝ
142 zre 11378 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
143 2re 11087 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℝ
144 reexpcl 12872 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℝ ∧ 𝑦 ∈ ℕ0) → (2↑𝑦) ∈ ℝ)
145143, 144mpan 706 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℕ0 → (2↑𝑦) ∈ ℝ)
146 2cn 11088 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℂ
147 2ne0 11110 . . . . . . . . . . . . . . . . . . . . 21 2 ≠ 0
148 nn0z 11397 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℕ0𝑦 ∈ ℤ)
149 expne0i 12887 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 𝑦 ∈ ℤ) → (2↑𝑦) ≠ 0)
150146, 147, 148, 149mp3an12i 1427 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℕ0 → (2↑𝑦) ≠ 0)
151145, 150jca 554 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℕ0 → ((2↑𝑦) ∈ ℝ ∧ (2↑𝑦) ≠ 0))
152 redivcl 10741 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℝ ∧ (2↑𝑦) ∈ ℝ ∧ (2↑𝑦) ≠ 0) → (𝑥 / (2↑𝑦)) ∈ ℝ)
153 peano2re 10206 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
154 redivcl 10741 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 + 1) ∈ ℝ ∧ (2↑𝑦) ∈ ℝ ∧ (2↑𝑦) ≠ 0) → ((𝑥 + 1) / (2↑𝑦)) ∈ ℝ)
155153, 154syl3an1 1358 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℝ ∧ (2↑𝑦) ∈ ℝ ∧ (2↑𝑦) ≠ 0) → ((𝑥 + 1) / (2↑𝑦)) ∈ ℝ)
156152, 155opelxpd 5147 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℝ ∧ (2↑𝑦) ∈ ℝ ∧ (2↑𝑦) ≠ 0) → ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩ ∈ (ℝ × ℝ))
1571563expb 1265 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℝ ∧ ((2↑𝑦) ∈ ℝ ∧ (2↑𝑦) ≠ 0)) → ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩ ∈ (ℝ × ℝ))
158142, 151, 157syl2an 494 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩ ∈ (ℝ × ℝ))
159158rgen2 2974 . . . . . . . . . . . . . . . . 17 𝑥 ∈ ℤ ∀𝑦 ∈ ℕ0 ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩ ∈ (ℝ × ℝ)
160 eqid 2621 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
161160fmpt2 7234 . . . . . . . . . . . . . . . . 17 (∀𝑥 ∈ ℤ ∀𝑦 ∈ ℕ0 ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩ ∈ (ℝ × ℝ) ↔ (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩):(ℤ × ℕ0)⟶(ℝ × ℝ))
162159, 161mpbi 220 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩):(ℤ × ℕ0)⟶(ℝ × ℝ)
163 frn 6051 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩):(ℤ × ℕ0)⟶(ℝ × ℝ) → ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ⊆ (ℝ × ℝ))
164162, 163ax-mp 5 . . . . . . . . . . . . . . 15 ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ⊆ (ℝ × ℝ)
16542, 164sstri 3610 . . . . . . . . . . . . . 14 {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ⊆ (ℝ × ℝ)
16653, 165sstri 3610 . . . . . . . . . . . . 13 {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ⊆ (ℝ × ℝ)
167 ax-resscn 9990 . . . . . . . . . . . . . 14 ℝ ⊆ ℂ
168 xpss12 5223 . . . . . . . . . . . . . 14 ((ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℝ × ℝ) ⊆ (ℂ × ℂ))
169167, 167, 168mp2an 708 . . . . . . . . . . . . 13 (ℝ × ℝ) ⊆ (ℂ × ℂ)
170166, 169sstri 3610 . . . . . . . . . . . 12 {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ⊆ (ℂ × ℂ)
171 fss 6054 . . . . . . . . . . . 12 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ⊆ (ℂ × ℂ)) → 𝑓:ℕ⟶(ℂ × ℂ))
172170, 171mpan2 707 . . . . . . . . . . 11 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → 𝑓:ℕ⟶(ℂ × ℂ))
173 fco 6056 . . . . . . . . . . 11 (((abs ∘ − ):(ℂ × ℂ)⟶ℝ ∧ 𝑓:ℕ⟶(ℂ × ℂ)) → ((abs ∘ − ) ∘ 𝑓):ℕ⟶ℝ)
174141, 172, 173sylancr 695 . . . . . . . . . 10 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ((abs ∘ − ) ∘ 𝑓):ℕ⟶ℝ)
175 nnuz 11720 . . . . . . . . . . 11 ℕ = (ℤ‘1)
176 1z 11404 . . . . . . . . . . . 12 1 ∈ ℤ
177176a1i 11 . . . . . . . . . . 11 (((abs ∘ − ) ∘ 𝑓):ℕ⟶ℝ → 1 ∈ ℤ)
178 ffvelrn 6355 . . . . . . . . . . 11 ((((abs ∘ − ) ∘ 𝑓):ℕ⟶ℝ ∧ 𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝑓)‘𝑛) ∈ ℝ)
179175, 177, 178serfre 12825 . . . . . . . . . 10 (((abs ∘ − ) ∘ 𝑓):ℕ⟶ℝ → seq1( + , ((abs ∘ − ) ∘ 𝑓)):ℕ⟶ℝ)
180 frn 6051 . . . . . . . . . . 11 (seq1( + , ((abs ∘ − ) ∘ 𝑓)):ℕ⟶ℝ → ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ ℝ)
181 ressxr 10080 . . . . . . . . . . 11 ℝ ⊆ ℝ*
182180, 181syl6ss 3613 . . . . . . . . . 10 (seq1( + , ((abs ∘ − ) ∘ 𝑓)):ℕ⟶ℝ → ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ ℝ*)
18352, 174, 179, 1824syl 19 . . . . . . . . 9 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ ℝ*)
184 rexr 10082 . . . . . . . . . 10 (𝑀 ∈ ℝ → 𝑀 ∈ ℝ*)
1851843ad2ant2 1082 . . . . . . . . 9 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) → 𝑀 ∈ ℝ*)
186 supxrlub 12152 . . . . . . . . 9 ((ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ ℝ*𝑀 ∈ ℝ*) → (𝑀 < sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ↔ ∃𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝑓))𝑀 < 𝑧))
187183, 185, 186syl2anr 495 . . . . . . . 8 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → (𝑀 < sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ↔ ∃𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝑓))𝑀 < 𝑧))
188137, 187mpbid 222 . . . . . . 7 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ∃𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝑓))𝑀 < 𝑧)
189 seqfn 12808 . . . . . . . . . 10 (1 ∈ ℤ → seq1( + , ((abs ∘ − ) ∘ 𝑓)) Fn (ℤ‘1))
190176, 189ax-mp 5 . . . . . . . . 9 seq1( + , ((abs ∘ − ) ∘ 𝑓)) Fn (ℤ‘1)
191175fneq2i 5984 . . . . . . . . 9 (seq1( + , ((abs ∘ − ) ∘ 𝑓)) Fn ℕ ↔ seq1( + , ((abs ∘ − ) ∘ 𝑓)) Fn (ℤ‘1))
192190, 191mpbir 221 . . . . . . . 8 seq1( + , ((abs ∘ − ) ∘ 𝑓)) Fn ℕ
193 breq2 4655 . . . . . . . . 9 (𝑧 = (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) → (𝑀 < 𝑧𝑀 < (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛)))
194193rexrn 6359 . . . . . . . 8 (seq1( + , ((abs ∘ − ) ∘ 𝑓)) Fn ℕ → (∃𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝑓))𝑀 < 𝑧 ↔ ∃𝑛 ∈ ℕ 𝑀 < (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛)))
195192, 194ax-mp 5 . . . . . . 7 (∃𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝑓))𝑀 < 𝑧 ↔ ∃𝑛 ∈ ℕ 𝑀 < (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
196188, 195sylib 208 . . . . . 6 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ∃𝑛 ∈ ℕ 𝑀 < (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
19760ffvelrnda 6357 . . . . . . . . . . . . . . . 16 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → (𝑓𝑧) ∈ ( ≤ ∩ (ℝ × ℝ)))
198 0le0 11107 . . . . . . . . . . . . . . . . . 18 0 ≤ 0
199 df-br 4652 . . . . . . . . . . . . . . . . . 18 (0 ≤ 0 ↔ ⟨0, 0⟩ ∈ ≤ )
200198, 199mpbi 220 . . . . . . . . . . . . . . . . 17 ⟨0, 0⟩ ∈ ≤
201 0re 10037 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ
202 opelxpi 5146 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ ∧ 0 ∈ ℝ) → ⟨0, 0⟩ ∈ (ℝ × ℝ))
203201, 201, 202mp2an 708 . . . . . . . . . . . . . . . . 17 ⟨0, 0⟩ ∈ (ℝ × ℝ)
204 elin 3794 . . . . . . . . . . . . . . . . 17 (⟨0, 0⟩ ∈ ( ≤ ∩ (ℝ × ℝ)) ↔ (⟨0, 0⟩ ∈ ≤ ∧ ⟨0, 0⟩ ∈ (ℝ × ℝ)))
205200, 203, 204mpbir2an 955 . . . . . . . . . . . . . . . 16 ⟨0, 0⟩ ∈ ( ≤ ∩ (ℝ × ℝ))
206 ifcl 4128 . . . . . . . . . . . . . . . 16 (((𝑓𝑧) ∈ ( ≤ ∩ (ℝ × ℝ)) ∧ ⟨0, 0⟩ ∈ ( ≤ ∩ (ℝ × ℝ))) → if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) ∈ ( ≤ ∩ (ℝ × ℝ)))
207197, 205, 206sylancl 694 . . . . . . . . . . . . . . 15 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) ∈ ( ≤ ∩ (ℝ × ℝ)))
208 eqid 2621 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)) = (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))
209207, 208fmptd 6383 . . . . . . . . . . . . . 14 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)):ℕ⟶( ≤ ∩ (ℝ × ℝ)))
210 df-ov 6650 . . . . . . . . . . . . . . . . . . . . . 22 (0(,)0) = ((,)‘⟨0, 0⟩)
211 iooid 12200 . . . . . . . . . . . . . . . . . . . . . 22 (0(,)0) = ∅
212210, 211eqtr3i 2645 . . . . . . . . . . . . . . . . . . . . 21 ((,)‘⟨0, 0⟩) = ∅
213212ineq1i 3808 . . . . . . . . . . . . . . . . . . . 20 (((,)‘⟨0, 0⟩) ∩ ((,)‘(𝑓𝑧))) = (∅ ∩ ((,)‘(𝑓𝑧)))
214 0in 3967 . . . . . . . . . . . . . . . . . . . 20 (∅ ∩ ((,)‘(𝑓𝑧))) = ∅
215213, 214eqtri 2643 . . . . . . . . . . . . . . . . . . 19 (((,)‘⟨0, 0⟩) ∩ ((,)‘(𝑓𝑧))) = ∅
216215olci 406 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑧 ∨ (((,)‘⟨0, 0⟩) ∩ ((,)‘(𝑓𝑧))) = ∅)
217 ineq1 3805 . . . . . . . . . . . . . . . . . . . . 21 (((,)‘(𝑓𝑚)) = if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) → (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘(𝑓𝑧))))
218217eqeq1d 2623 . . . . . . . . . . . . . . . . . . . 20 (((,)‘(𝑓𝑚)) = if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) → ((((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅ ↔ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘(𝑓𝑧))) = ∅))
219218orbi2d 738 . . . . . . . . . . . . . . . . . . 19 (((,)‘(𝑓𝑚)) = if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) → ((𝑚 = 𝑧 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅) ↔ (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘(𝑓𝑧))) = ∅)))
220 ineq1 3805 . . . . . . . . . . . . . . . . . . . . 21 (((,)‘⟨0, 0⟩) = if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) → (((,)‘⟨0, 0⟩) ∩ ((,)‘(𝑓𝑧))) = (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘(𝑓𝑧))))
221220eqeq1d 2623 . . . . . . . . . . . . . . . . . . . 20 (((,)‘⟨0, 0⟩) = if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) → ((((,)‘⟨0, 0⟩) ∩ ((,)‘(𝑓𝑧))) = ∅ ↔ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘(𝑓𝑧))) = ∅))
222221orbi2d 738 . . . . . . . . . . . . . . . . . . 19 (((,)‘⟨0, 0⟩) = if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) → ((𝑚 = 𝑧 ∨ (((,)‘⟨0, 0⟩) ∩ ((,)‘(𝑓𝑧))) = ∅) ↔ (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘(𝑓𝑧))) = ∅)))
223219, 222ifboth 4122 . . . . . . . . . . . . . . . . . 18 (((𝑚 = 𝑧 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅) ∧ (𝑚 = 𝑧 ∨ (((,)‘⟨0, 0⟩) ∩ ((,)‘(𝑓𝑧))) = ∅)) → (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘(𝑓𝑧))) = ∅))
224112, 216, 223sylancl 694 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘(𝑓𝑧))) = ∅))
225212ineq2i 3809 . . . . . . . . . . . . . . . . . . 19 (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘⟨0, 0⟩)) = (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ∅)
226 in0 3966 . . . . . . . . . . . . . . . . . . 19 (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ∅) = ∅
227225, 226eqtri 2643 . . . . . . . . . . . . . . . . . 18 (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘⟨0, 0⟩)) = ∅
228227olci 406 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘⟨0, 0⟩)) = ∅)
229 ineq2 3806 . . . . . . . . . . . . . . . . . . . 20 (((,)‘(𝑓𝑧)) = if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩)) → (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘(𝑓𝑧))) = (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩))))
230229eqeq1d 2623 . . . . . . . . . . . . . . . . . . 19 (((,)‘(𝑓𝑧)) = if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩)) → ((if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘(𝑓𝑧))) = ∅ ↔ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩))) = ∅))
231230orbi2d 738 . . . . . . . . . . . . . . . . . 18 (((,)‘(𝑓𝑧)) = if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩)) → ((𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘(𝑓𝑧))) = ∅) ↔ (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩))) = ∅)))
232 ineq2 3806 . . . . . . . . . . . . . . . . . . . 20 (((,)‘⟨0, 0⟩) = if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩)) → (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘⟨0, 0⟩)) = (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩))))
233232eqeq1d 2623 . . . . . . . . . . . . . . . . . . 19 (((,)‘⟨0, 0⟩) = if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩)) → ((if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘⟨0, 0⟩)) = ∅ ↔ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩))) = ∅))
234233orbi2d 738 . . . . . . . . . . . . . . . . . 18 (((,)‘⟨0, 0⟩) = if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩)) → ((𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘⟨0, 0⟩)) = ∅) ↔ (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩))) = ∅)))
235231, 234ifboth 4122 . . . . . . . . . . . . . . . . 17 (((𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘(𝑓𝑧))) = ∅) ∧ (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘⟨0, 0⟩)) = ∅)) → (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩))) = ∅))
236224, 228, 235sylancl 694 . . . . . . . . . . . . . . . 16 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩))) = ∅))
237236ralrimivva 2970 . . . . . . . . . . . . . . 15 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ∀𝑚 ∈ ℕ ∀𝑧 ∈ ℕ (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩))) = ∅))
238 disjeq2 4622 . . . . . . . . . . . . . . . . 17 (∀𝑚 ∈ ℕ ((,)‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)) = if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) → (Disj 𝑚 ∈ ℕ ((,)‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)) ↔ Disj 𝑚 ∈ ℕ if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩))))
239 eleq1 2688 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 𝑚 → (𝑧 ∈ (1...𝑛) ↔ 𝑚 ∈ (1...𝑛)))
240 fveq2 6189 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 𝑚 → (𝑓𝑧) = (𝑓𝑚))
241239, 240ifbieq1d 4107 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑚 → if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) = if(𝑚 ∈ (1...𝑛), (𝑓𝑚), ⟨0, 0⟩))
242 fvex 6199 . . . . . . . . . . . . . . . . . . . . 21 (𝑓𝑚) ∈ V
243 opex 4930 . . . . . . . . . . . . . . . . . . . . 21 ⟨0, 0⟩ ∈ V
244242, 243ifex 4154 . . . . . . . . . . . . . . . . . . . 20 if(𝑚 ∈ (1...𝑛), (𝑓𝑚), ⟨0, 0⟩) ∈ V
245241, 208, 244fvmpt 6280 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ ℕ → ((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚) = if(𝑚 ∈ (1...𝑛), (𝑓𝑚), ⟨0, 0⟩))
246245fveq2d 6193 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → ((,)‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)) = ((,)‘if(𝑚 ∈ (1...𝑛), (𝑓𝑚), ⟨0, 0⟩)))
247 fvif 6202 . . . . . . . . . . . . . . . . . 18 ((,)‘if(𝑚 ∈ (1...𝑛), (𝑓𝑚), ⟨0, 0⟩)) = if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩))
248246, 247syl6eq 2671 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → ((,)‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)) = if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)))
249238, 248mprg 2925 . . . . . . . . . . . . . . . 16 (Disj 𝑚 ∈ ℕ ((,)‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)) ↔ Disj 𝑚 ∈ ℕ if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)))
250 eleq1 2688 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑧 → (𝑚 ∈ (1...𝑛) ↔ 𝑧 ∈ (1...𝑛)))
251250, 116ifbieq1d 4107 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑧 → if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) = if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩)))
252251disjor 4632 . . . . . . . . . . . . . . . 16 (Disj 𝑚 ∈ ℕ if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ↔ ∀𝑚 ∈ ℕ ∀𝑧 ∈ ℕ (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩))) = ∅))
253249, 252bitri 264 . . . . . . . . . . . . . . 15 (Disj 𝑚 ∈ ℕ ((,)‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)) ↔ ∀𝑚 ∈ ℕ ∀𝑧 ∈ ℕ (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩))) = ∅))
254237, 253sylibr 224 . . . . . . . . . . . . . 14 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → Disj 𝑚 ∈ ℕ ((,)‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)))
255 eqid 2621 . . . . . . . . . . . . . 14 seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))) = seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))
256209, 254, 255uniiccvol 23342 . . . . . . . . . . . . 13 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → (vol*‘ ran ([,] ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))) = sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))), ℝ*, < ))
257256adantr 481 . . . . . . . . . . . 12 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (vol*‘ ran ([,] ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))) = sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))), ℝ*, < ))
258 rexpssxrxp 10081 . . . . . . . . . . . . . . . . . . . . 21 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
259166, 258sstri 3610 . . . . . . . . . . . . . . . . . . . 20 {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ⊆ (ℝ* × ℝ*)
260259, 65sseldi 3599 . . . . . . . . . . . . . . . . . . 19 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → (𝑓𝑧) ∈ (ℝ* × ℝ*))
261 0xr 10083 . . . . . . . . . . . . . . . . . . . 20 0 ∈ ℝ*
262 opelxpi 5146 . . . . . . . . . . . . . . . . . . . 20 ((0 ∈ ℝ* ∧ 0 ∈ ℝ*) → ⟨0, 0⟩ ∈ (ℝ* × ℝ*))
263261, 261, 262mp2an 708 . . . . . . . . . . . . . . . . . . 19 ⟨0, 0⟩ ∈ (ℝ* × ℝ*)
264 ifcl 4128 . . . . . . . . . . . . . . . . . . 19 (((𝑓𝑧) ∈ (ℝ* × ℝ*) ∧ ⟨0, 0⟩ ∈ (ℝ* × ℝ*)) → if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) ∈ (ℝ* × ℝ*))
265260, 263, 264sylancl 694 . . . . . . . . . . . . . . . . . 18 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) ∈ (ℝ* × ℝ*))
266 eqidd 2622 . . . . . . . . . . . . . . . . . 18 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)) = (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))
267 iccf 12269 . . . . . . . . . . . . . . . . . . . 20 [,]:(ℝ* × ℝ*)⟶𝒫 ℝ*
268267a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → [,]:(ℝ* × ℝ*)⟶𝒫 ℝ*)
269268feqmptd 6247 . . . . . . . . . . . . . . . . . 18 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → [,] = (𝑚 ∈ (ℝ* × ℝ*) ↦ ([,]‘𝑚)))
270 fveq2 6189 . . . . . . . . . . . . . . . . . 18 (𝑚 = if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) → ([,]‘𝑚) = ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))
271265, 266, 269, 270fmptco 6394 . . . . . . . . . . . . . . . . 17 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ([,] ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))) = (𝑧 ∈ ℕ ↦ ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))
27252, 271syl 17 . . . . . . . . . . . . . . . 16 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ([,] ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))) = (𝑧 ∈ ℕ ↦ ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))
273272rneqd 5351 . . . . . . . . . . . . . . 15 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ran ([,] ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))) = ran (𝑧 ∈ ℕ ↦ ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))
274273unieqd 4444 . . . . . . . . . . . . . 14 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ran ([,] ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))) = ran (𝑧 ∈ ℕ ↦ ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))
275 peano2nn 11029 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
276275, 175syl6eleq 2710 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ (ℤ‘1))
277 fzouzsplit 12499 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 + 1) ∈ (ℤ‘1) → (ℤ‘1) = ((1..^(𝑛 + 1)) ∪ (ℤ‘(𝑛 + 1))))
278276, 277syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (ℤ‘1) = ((1..^(𝑛 + 1)) ∪ (ℤ‘(𝑛 + 1))))
279175, 278syl5eq 2667 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → ℕ = ((1..^(𝑛 + 1)) ∪ (ℤ‘(𝑛 + 1))))
280 nnz 11396 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
281 fzval3 12532 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℤ → (1...𝑛) = (1..^(𝑛 + 1)))
282280, 281syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (1...𝑛) = (1..^(𝑛 + 1)))
283282uneq1d 3764 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → ((1...𝑛) ∪ (ℤ‘(𝑛 + 1))) = ((1..^(𝑛 + 1)) ∪ (ℤ‘(𝑛 + 1))))
284279, 283eqtr4d 2658 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → ℕ = ((1...𝑛) ∪ (ℤ‘(𝑛 + 1))))
285 fvif 6202 . . . . . . . . . . . . . . . . . 18 ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)) = if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩))
286285a1i 11 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)) = if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩)))
287284, 286iuneq12d 4544 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 𝑧 ∈ ℕ ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)) = 𝑧 ∈ ((1...𝑛) ∪ (ℤ‘(𝑛 + 1)))if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩)))
288 fvex 6199 . . . . . . . . . . . . . . . . 17 ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)) ∈ V
289288dfiun3 5378 . . . . . . . . . . . . . . . 16 𝑧 ∈ ℕ ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)) = ran (𝑧 ∈ ℕ ↦ ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))
290 iunxun 4603 . . . . . . . . . . . . . . . 16 𝑧 ∈ ((1...𝑛) ∪ (ℤ‘(𝑛 + 1)))if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩)) = ( 𝑧 ∈ (1...𝑛)if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩)) ∪ 𝑧 ∈ (ℤ‘(𝑛 + 1))if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩)))
291287, 289, 2903eqtr3g 2678 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → ran (𝑧 ∈ ℕ ↦ ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))) = ( 𝑧 ∈ (1...𝑛)if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩)) ∪ 𝑧 ∈ (ℤ‘(𝑛 + 1))if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩))))
292 iftrue 4090 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ (1...𝑛) → if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩)) = ([,]‘(𝑓𝑧)))
293292iuneq2i 4537 . . . . . . . . . . . . . . . . 17 𝑧 ∈ (1...𝑛)if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩)) = 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))
294293a1i 11 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 𝑧 ∈ (1...𝑛)if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩)) = 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)))
295 uznfz 12419 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ (ℤ‘(𝑛 + 1)) → ¬ 𝑧 ∈ (1...((𝑛 + 1) − 1)))
296295adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ ∧ 𝑧 ∈ (ℤ‘(𝑛 + 1))) → ¬ 𝑧 ∈ (1...((𝑛 + 1) − 1)))
297 nncn 11025 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
298 ax-1cn 9991 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ ℂ
299 pncan 10284 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 + 1) − 1) = 𝑛)
300297, 298, 299sylancl 694 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ℕ → ((𝑛 + 1) − 1) = 𝑛)
301300oveq2d 6663 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → (1...((𝑛 + 1) − 1)) = (1...𝑛))
302301eleq2d 2686 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → (𝑧 ∈ (1...((𝑛 + 1) − 1)) ↔ 𝑧 ∈ (1...𝑛)))
303302notbid 308 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → (¬ 𝑧 ∈ (1...((𝑛 + 1) − 1)) ↔ ¬ 𝑧 ∈ (1...𝑛)))
304303adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ ∧ 𝑧 ∈ (ℤ‘(𝑛 + 1))) → (¬ 𝑧 ∈ (1...((𝑛 + 1) − 1)) ↔ ¬ 𝑧 ∈ (1...𝑛)))
305296, 304mpbid 222 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ ∧ 𝑧 ∈ (ℤ‘(𝑛 + 1))) → ¬ 𝑧 ∈ (1...𝑛))
306305iffalsed 4095 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ ∧ 𝑧 ∈ (ℤ‘(𝑛 + 1))) → if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩)) = ([,]‘⟨0, 0⟩))
307306iuneq2dv 4540 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 𝑧 ∈ (ℤ‘(𝑛 + 1))if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩)) = 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩))
308294, 307uneq12d 3766 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → ( 𝑧 ∈ (1...𝑛)if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩)) ∪ 𝑧 ∈ (ℤ‘(𝑛 + 1))if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩))) = ( 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ∪ 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩)))
309291, 308eqtrd 2655 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → ran (𝑧 ∈ ℕ ↦ ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))) = ( 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ∪ 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩)))
310274, 309sylan9eq 2675 . . . . . . . . . . . . 13 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → ran ([,] ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))) = ( 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ∪ 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩)))
311310fveq2d 6193 . . . . . . . . . . . 12 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (vol*‘ ran ([,] ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))) = (vol*‘( 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ∪ 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩))))
312 xrltso 11971 . . . . . . . . . . . . . . 15 < Or ℝ*
313312a1i 11 . . . . . . . . . . . . . 14 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → < Or ℝ*)
314 elnnuz 11721 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘1))
315314biimpi 206 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → 𝑛 ∈ (ℤ‘1))
316315adantl 482 . . . . . . . . . . . . . . . 16 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ (ℤ‘1))
317 elfznn 12367 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ (1...𝑛) → 𝑢 ∈ ℕ)
318174ffvelrnda 6357 . . . . . . . . . . . . . . . . . 18 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑢 ∈ ℕ) → (((abs ∘ − ) ∘ 𝑓)‘𝑢) ∈ ℝ)
319317, 318sylan2 491 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑢 ∈ (1...𝑛)) → (((abs ∘ − ) ∘ 𝑓)‘𝑢) ∈ ℝ)
320319adantlr 751 . . . . . . . . . . . . . . . 16 (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑢 ∈ (1...𝑛)) → (((abs ∘ − ) ∘ 𝑓)‘𝑢) ∈ ℝ)
321 readdcl 10016 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑢 + 𝑣) ∈ ℝ)
322321adantl 482 . . . . . . . . . . . . . . . 16 (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → (𝑢 + 𝑣) ∈ ℝ)
323316, 320, 322seqcl 12816 . . . . . . . . . . . . . . 15 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ∈ ℝ)
324323rexrd 10086 . . . . . . . . . . . . . 14 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ∈ ℝ*)
325 eqidd 2622 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ (1...𝑛) → (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)) = (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))
326 iftrue 4090 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 ∈ (1...𝑛) → if(𝑚 ∈ (1...𝑛), (𝑓𝑚), ⟨0, 0⟩) = (𝑓𝑚))
327241, 326sylan9eqr 2677 . . . . . . . . . . . . . . . . . . . . 21 ((𝑚 ∈ (1...𝑛) ∧ 𝑧 = 𝑚) → if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) = (𝑓𝑚))
328 elfznn 12367 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ (1...𝑛) → 𝑚 ∈ ℕ)
329242a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ (1...𝑛) → (𝑓𝑚) ∈ V)
330325, 327, 328, 329fvmptd 6286 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ (1...𝑛) → ((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚) = (𝑓𝑚))
331330adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ (1...𝑛)) → ((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚) = (𝑓𝑚))
332331fveq2d 6193 . . . . . . . . . . . . . . . . . 18 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ (1...𝑛)) → ((abs ∘ − )‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)) = ((abs ∘ − )‘(𝑓𝑚)))
333 fvex 6199 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓𝑧) ∈ V
334333, 243ifex 4154 . . . . . . . . . . . . . . . . . . . . 21 if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) ∈ V
335334, 208fnmpti 6020 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)) Fn ℕ
336 fvco2 6271 . . . . . . . . . . . . . . . . . . . 20 (((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)) Fn ℕ ∧ 𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) = ((abs ∘ − )‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)))
337335, 328, 336sylancr 695 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ (1...𝑛) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) = ((abs ∘ − )‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)))
338337adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ (1...𝑛)) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) = ((abs ∘ − )‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)))
339 ffn 6043 . . . . . . . . . . . . . . . . . . 19 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → 𝑓 Fn ℕ)
340 fvco2 6271 . . . . . . . . . . . . . . . . . . 19 ((𝑓 Fn ℕ ∧ 𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ 𝑓)‘𝑚) = ((abs ∘ − )‘(𝑓𝑚)))
341339, 328, 340syl2an 494 . . . . . . . . . . . . . . . . . 18 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ (1...𝑛)) → (((abs ∘ − ) ∘ 𝑓)‘𝑚) = ((abs ∘ − )‘(𝑓𝑚)))
342332, 338, 3413eqtr4d 2665 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ (1...𝑛)) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) = (((abs ∘ − ) ∘ 𝑓)‘𝑚))
343342adantlr 751 . . . . . . . . . . . . . . . 16 (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑛)) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) = (((abs ∘ − ) ∘ 𝑓)‘𝑚))
344316, 343seqfveq 12820 . . . . . . . . . . . . . . 15 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑛) = (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
345176a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → 1 ∈ ℤ)
346170, 65sseldi 3599 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → (𝑓𝑧) ∈ (ℂ × ℂ))
347 0cn 10029 . . . . . . . . . . . . . . . . . . . . . . 23 0 ∈ ℂ
348 opelxpi 5146 . . . . . . . . . . . . . . . . . . . . . . 23 ((0 ∈ ℂ ∧ 0 ∈ ℂ) → ⟨0, 0⟩ ∈ (ℂ × ℂ))
349347, 347, 348mp2an 708 . . . . . . . . . . . . . . . . . . . . . 22 ⟨0, 0⟩ ∈ (ℂ × ℂ)
350 ifcl 4128 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑓𝑧) ∈ (ℂ × ℂ) ∧ ⟨0, 0⟩ ∈ (ℂ × ℂ)) → if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) ∈ (ℂ × ℂ))
351346, 349, 350sylancl 694 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) ∈ (ℂ × ℂ))
352351, 208fmptd 6383 . . . . . . . . . . . . . . . . . . . 20 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)):ℕ⟶(ℂ × ℂ))
353 fco 6056 . . . . . . . . . . . . . . . . . . . 20 (((abs ∘ − ):(ℂ × ℂ)⟶ℝ ∧ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)):ℕ⟶(ℂ × ℂ)) → ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))):ℕ⟶ℝ)
354141, 352, 353sylancr 695 . . . . . . . . . . . . . . . . . . 19 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))):ℕ⟶ℝ)
355354ffvelrnda 6357 . . . . . . . . . . . . . . . . . 18 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) ∈ ℝ)
356175, 345, 355serfre 12825 . . . . . . . . . . . . . . . . 17 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))):ℕ⟶ℝ)
357356ffnd 6044 . . . . . . . . . . . . . . . 16 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))) Fn ℕ)
358 fnfvelrn 6354 . . . . . . . . . . . . . . . 16 ((seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))) Fn ℕ ∧ 𝑛 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑛) ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))))
359357, 358sylan 488 . . . . . . . . . . . . . . 15 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑛) ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))))
360344, 359eqeltrrd 2701 . . . . . . . . . . . . . 14 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))))
361 frn 6051 . . . . . . . . . . . . . . . . . 18 (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))):ℕ⟶ℝ → ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))) ⊆ ℝ)
362356, 361syl 17 . . . . . . . . . . . . . . . . 17 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))) ⊆ ℝ)
363362adantr 481 . . . . . . . . . . . . . . . 16 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))) ⊆ ℝ)
364363sselda 3601 . . . . . . . . . . . . . . 15 (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))) → 𝑚 ∈ ℝ)
365323adantr 481 . . . . . . . . . . . . . . 15 (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ∈ ℝ)
366 readdcl 10016 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚 ∈ ℝ ∧ 𝑢 ∈ ℝ) → (𝑚 + 𝑢) ∈ ℝ)
367366adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ (𝑚 ∈ ℝ ∧ 𝑢 ∈ ℝ)) → (𝑚 + 𝑢) ∈ ℝ)
368 recn 10023 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 ∈ ℝ → 𝑚 ∈ ℂ)
369 recn 10023 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑢 ∈ ℝ → 𝑢 ∈ ℂ)
370 recn 10023 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑣 ∈ ℝ → 𝑣 ∈ ℂ)
371 addass 10020 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑚 ∈ ℂ ∧ 𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → ((𝑚 + 𝑢) + 𝑣) = (𝑚 + (𝑢 + 𝑣)))
372368, 369, 370, 371syl3an 1367 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚 ∈ ℝ ∧ 𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → ((𝑚 + 𝑢) + 𝑣) = (𝑚 + (𝑢 + 𝑣)))
373372adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ (𝑚 ∈ ℝ ∧ 𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → ((𝑚 + 𝑢) + 𝑣) = (𝑚 + (𝑢 + 𝑣)))
374 nnltp1le 11430 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) → (𝑛 < 𝑡 ↔ (𝑛 + 1) ≤ 𝑡))
375374biimpa 501 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (𝑛 + 1) ≤ 𝑡)
376275nnzd 11478 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℤ)
377 nnz 11396 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 ∈ ℕ → 𝑡 ∈ ℤ)
378 eluz 11698 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑛 + 1) ∈ ℤ ∧ 𝑡 ∈ ℤ) → (𝑡 ∈ (ℤ‘(𝑛 + 1)) ↔ (𝑛 + 1) ≤ 𝑡))
379376, 377, 378syl2an 494 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) → (𝑡 ∈ (ℤ‘(𝑛 + 1)) ↔ (𝑛 + 1) ≤ 𝑡))
380379adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (𝑡 ∈ (ℤ‘(𝑛 + 1)) ↔ (𝑛 + 1) ≤ 𝑡))
381375, 380mpbird 247 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → 𝑡 ∈ (ℤ‘(𝑛 + 1)))
382381adantlll 754 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → 𝑡 ∈ (ℤ‘(𝑛 + 1)))
383315ad3antlr 767 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → 𝑛 ∈ (ℤ‘1))
384 simplll 798 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → 𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)})
385 elfznn 12367 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ (1...𝑡) → 𝑚 ∈ ℕ)
386384, 385, 355syl2an 494 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ (1...𝑡)) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) ∈ ℝ)
387367, 373, 382, 383, 386seqsplit 12829 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) = ((seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑛) + (seq(𝑛 + 1)( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡)))
388344ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑛) = (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
389 elfzelz 12339 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑚 ∈ ((𝑛 + 1)...𝑡) → 𝑚 ∈ ℤ)
390389adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 𝑚 ∈ ℤ)
391 0red 10038 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 0 ∈ ℝ)
392275nnred 11032 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℝ)
393392ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → (𝑛 + 1) ∈ ℝ)
394389zred 11479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑚 ∈ ((𝑛 + 1)...𝑡) → 𝑚 ∈ ℝ)
395394adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 𝑚 ∈ ℝ)
396275nngt0d 11061 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑛 ∈ ℕ → 0 < (𝑛 + 1))
397396ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 0 < (𝑛 + 1))
398 elfzle1 12341 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑚 ∈ ((𝑛 + 1)...𝑡) → (𝑛 + 1) ≤ 𝑚)
399398adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → (𝑛 + 1) ≤ 𝑚)
400391, 393, 395, 397, 399ltletrd 10194 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 0 < 𝑚)
401 elnnz 11384 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑚 ∈ ℕ ↔ (𝑚 ∈ ℤ ∧ 0 < 𝑚))
402390, 400, 401sylanbrc 698 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 𝑚 ∈ ℕ)
403335, 402, 336sylancr 695 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) = ((abs ∘ − )‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)))
404 eqidd 2622 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)) = (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))
405 nnre 11024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
406405adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 𝑛 ∈ ℝ)
407392adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → (𝑛 + 1) ∈ ℝ)
408394adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 𝑚 ∈ ℝ)
409405ltp1d 10951 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑛 ∈ ℕ → 𝑛 < (𝑛 + 1))
410409adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 𝑛 < (𝑛 + 1))
411398adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → (𝑛 + 1) ≤ 𝑚)
412406, 407, 408, 410, 411ltletrd 10194 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 𝑛 < 𝑚)
413412adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) ∧ 𝑧 = 𝑚) → 𝑛 < 𝑚)
414406, 408ltnled 10181 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → (𝑛 < 𝑚 ↔ ¬ 𝑚𝑛))
415 breq1 4654 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑚 = 𝑧 → (𝑚𝑛𝑧𝑛))
416415equcoms 1946 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑧 = 𝑚 → (𝑚𝑛𝑧𝑛))
417416notbid 308 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑧 = 𝑚 → (¬ 𝑚𝑛 ↔ ¬ 𝑧𝑛))
418414, 417sylan9bb 736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) ∧ 𝑧 = 𝑚) → (𝑛 < 𝑚 ↔ ¬ 𝑧𝑛))
419413, 418mpbid 222 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) ∧ 𝑧 = 𝑚) → ¬ 𝑧𝑛)
420 elfzle2 12342 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑧 ∈ (1...𝑛) → 𝑧𝑛)
421419, 420nsyl 135 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) ∧ 𝑧 = 𝑚) → ¬ 𝑧 ∈ (1...𝑛))
422421iffalsed 4095 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) ∧ 𝑧 = 𝑚) → if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) = ⟨0, 0⟩)
423389adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 𝑚 ∈ ℤ)
424 0red 10038 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 0 ∈ ℝ)
425396adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 0 < (𝑛 + 1))
426424, 407, 408, 425, 411ltletrd 10194 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 0 < 𝑚)
427423, 426, 401sylanbrc 698 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 𝑚 ∈ ℕ)
428243a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → ⟨0, 0⟩ ∈ V)
429404, 422, 427, 428fvmptd 6286 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → ((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚) = ⟨0, 0⟩)
430429ad4ant14 1292 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → ((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚) = ⟨0, 0⟩)
431430fveq2d 6193 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → ((abs ∘ − )‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)) = ((abs ∘ − )‘⟨0, 0⟩))
432403, 431eqtrd 2655 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) = ((abs ∘ − )‘⟨0, 0⟩))
433 fvco3 6273 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (( − :(ℂ × ℂ)⟶ℂ ∧ ⟨0, 0⟩ ∈ (ℂ × ℂ)) → ((abs ∘ − )‘⟨0, 0⟩) = (abs‘( − ‘⟨0, 0⟩)))
434139, 349, 433mp2an 708 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((abs ∘ − )‘⟨0, 0⟩) = (abs‘( − ‘⟨0, 0⟩))
435 df-ov 6650 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (0 − 0) = ( − ‘⟨0, 0⟩)
436 0m0e0 11127 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (0 − 0) = 0
437435, 436eqtr3i 2645 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ( − ‘⟨0, 0⟩) = 0
438437fveq2i 6192 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (abs‘( − ‘⟨0, 0⟩)) = (abs‘0)
439 abs0 14019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (abs‘0) = 0
440438, 439eqtri 2643 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (abs‘( − ‘⟨0, 0⟩)) = 0
441434, 440eqtri 2643 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((abs ∘ − )‘⟨0, 0⟩) = 0
442432, 441syl6eq 2671 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) = 0)
443 elfzuz 12335 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑚 ∈ ((𝑛 + 1)...𝑡) → 𝑚 ∈ (ℤ‘(𝑛 + 1)))
444 c0ex 10031 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 0 ∈ V
445444fvconst2 6466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑚 ∈ (ℤ‘(𝑛 + 1)) → (((ℤ‘(𝑛 + 1)) × {0})‘𝑚) = 0)
446443, 445syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑚 ∈ ((𝑛 + 1)...𝑡) → (((ℤ‘(𝑛 + 1)) × {0})‘𝑚) = 0)
447446adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → (((ℤ‘(𝑛 + 1)) × {0})‘𝑚) = 0)
448442, 447eqtr4d 2658 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) = (((ℤ‘(𝑛 + 1)) × {0})‘𝑚))
449381, 448seqfveq 12820 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq(𝑛 + 1)( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) = (seq(𝑛 + 1)( + , ((ℤ‘(𝑛 + 1)) × {0}))‘𝑡))
450 eqid 2621 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (ℤ‘(𝑛 + 1)) = (ℤ‘(𝑛 + 1))
451450ser0 12848 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 ∈ (ℤ‘(𝑛 + 1)) → (seq(𝑛 + 1)( + , ((ℤ‘(𝑛 + 1)) × {0}))‘𝑡) = 0)
452381, 451syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq(𝑛 + 1)( + , ((ℤ‘(𝑛 + 1)) × {0}))‘𝑡) = 0)
453449, 452eqtrd 2655 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq(𝑛 + 1)( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) = 0)
454453adantlll 754 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq(𝑛 + 1)( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) = 0)
455388, 454oveq12d 6665 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → ((seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑛) + (seq(𝑛 + 1)( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡)) = ((seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) + 0))
456174ffvelrnda 6357 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ 𝑓)‘𝑚) ∈ ℝ)
457328, 456sylan2 491 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ (1...𝑛)) → (((abs ∘ − ) ∘ 𝑓)‘𝑚) ∈ ℝ)
458457adantlr 751 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑛)) → (((abs ∘ − ) ∘ 𝑓)‘𝑚) ∈ ℝ)
459 readdcl 10016 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑚 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑚 + 𝑣) ∈ ℝ)
460459adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ (𝑚 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → (𝑚 + 𝑣) ∈ ℝ)
461316, 458, 460seqcl 12816 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ∈ ℝ)
462461ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ∈ ℝ)
463462recnd 10065 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ∈ ℂ)
464463addid1d 10233 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → ((seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) + 0) = (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
465455, 464eqtrd 2655 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → ((seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑛) + (seq(𝑛 + 1)( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡)) = (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
466387, 465eqtrd 2655 . . . . . . . . . . . . . . . . . . . 20 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) = (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
467456ad5ant15 1302 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ 𝑓)‘𝑚) ∈ ℝ)
468328, 467sylan2 491 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ (1...𝑛)) → (((abs ∘ − ) ∘ 𝑓)‘𝑚) ∈ ℝ)
469383, 468, 367seqcl 12816 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ∈ ℝ)
470469leidd 10591 . . . . . . . . . . . . . . . . . . . 20 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
471466, 470eqbrtrd 4673 . . . . . . . . . . . . . . . . . . 19 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
472 elnnuz 11721 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 ∈ ℕ ↔ 𝑡 ∈ (ℤ‘1))
473472biimpi 206 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 ∈ ℕ → 𝑡 ∈ (ℤ‘1))
474473ad2antlr 763 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) → 𝑡 ∈ (ℤ‘1))
475 eqidd 2622 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)) = (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))
476 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) ∧ 𝑧 = 𝑚) → 𝑧 = 𝑚)
477 elfzle1 12341 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑚 ∈ (1...𝑡) → 1 ≤ 𝑚)
478477adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → 1 ≤ 𝑚)
479385nnred 11032 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑚 ∈ (1...𝑡) → 𝑚 ∈ ℝ)
480479adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → 𝑚 ∈ ℝ)
481 nnre 11024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑡 ∈ ℕ → 𝑡 ∈ ℝ)
482481ad3antlr 767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → 𝑡 ∈ ℝ)
483405ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → 𝑛 ∈ ℝ)
484 elfzle2 12342 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑚 ∈ (1...𝑡) → 𝑚𝑡)
485484adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → 𝑚𝑡)
486 simplr 792 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → 𝑡𝑛)
487480, 482, 483, 485, 486letrd 10191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → 𝑚𝑛)
488 elfzelz 12339 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑚 ∈ (1...𝑡) → 𝑚 ∈ ℤ)
489280ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) → 𝑛 ∈ ℤ)
490 elfz 12329 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑚 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑚 ∈ (1...𝑛) ↔ (1 ≤ 𝑚𝑚𝑛)))
491176, 490mp3an2 1411 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑚 ∈ (1...𝑛) ↔ (1 ≤ 𝑚𝑚𝑛)))
492488, 489, 491syl2anr 495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → (𝑚 ∈ (1...𝑛) ↔ (1 ≤ 𝑚𝑚𝑛)))
493478, 487, 492mpbir2and 957 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → 𝑚 ∈ (1...𝑛))
494493ad5ant2345 1316 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → 𝑚 ∈ (1...𝑛))
495494adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) ∧ 𝑧 = 𝑚) → 𝑚 ∈ (1...𝑛))
496476, 495eqeltrd 2700 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) ∧ 𝑧 = 𝑚) → 𝑧 ∈ (1...𝑛))
497 iftrue 4090 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ (1...𝑛) → if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) = (𝑓𝑧))
498496, 497syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) ∧ 𝑧 = 𝑚) → if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) = (𝑓𝑧))
499240adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) ∧ 𝑧 = 𝑚) → (𝑓𝑧) = (𝑓𝑚))
500498, 499eqtrd 2655 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) ∧ 𝑧 = 𝑚) → if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) = (𝑓𝑚))
501385adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → 𝑚 ∈ ℕ)
502242a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → (𝑓𝑚) ∈ V)
503475, 500, 501, 502fvmptd 6286 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → ((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚) = (𝑓𝑚))
504503fveq2d 6193 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → ((abs ∘ − )‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)) = ((abs ∘ − )‘(𝑓𝑚)))
505335, 385, 336sylancr 695 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ (1...𝑡) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) = ((abs ∘ − )‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)))
506505adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) = ((abs ∘ − )‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)))
507 simplll 798 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) → 𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)})
508 fvco3 6273 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ 𝑓)‘𝑚) = ((abs ∘ − )‘(𝑓𝑚)))
509507, 385, 508syl2an 494 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → (((abs ∘ − ) ∘ 𝑓)‘𝑚) = ((abs ∘ − )‘(𝑓𝑚)))
510504, 506, 5093eqtr4d 2665 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) = (((abs ∘ − ) ∘ 𝑓)‘𝑚))
511474, 510seqfveq 12820 . . . . . . . . . . . . . . . . . . . 20 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) → (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) = (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑡))
512 eluz 11698 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑡 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑛 ∈ (ℤ𝑡) ↔ 𝑡𝑛))
513377, 280, 512syl2anr 495 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) → (𝑛 ∈ (ℤ𝑡) ↔ 𝑡𝑛))
514513biimpar 502 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) → 𝑛 ∈ (ℤ𝑡))
515514adantlll 754 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) → 𝑛 ∈ (ℤ𝑡))
516507, 328, 456syl2an 494 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑛)) → (((abs ∘ − ) ∘ 𝑓)‘𝑚) ∈ ℝ)
517 elfzelz 12339 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑚 ∈ ((𝑡 + 1)...𝑛) → 𝑚 ∈ ℤ)
518517adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑡 ∈ ℕ ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → 𝑚 ∈ ℤ)
519 0red 10038 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑡 ∈ ℕ ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → 0 ∈ ℝ)
520 peano2nn 11029 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑡 ∈ ℕ → (𝑡 + 1) ∈ ℕ)
521520nnred 11032 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 ∈ ℕ → (𝑡 + 1) ∈ ℝ)
522521adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑡 ∈ ℕ ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → (𝑡 + 1) ∈ ℝ)
523517zred 11479 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑚 ∈ ((𝑡 + 1)...𝑛) → 𝑚 ∈ ℝ)
524523adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑡 ∈ ℕ ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → 𝑚 ∈ ℝ)
525520nngt0d 11061 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 ∈ ℕ → 0 < (𝑡 + 1))
526525adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑡 ∈ ℕ ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → 0 < (𝑡 + 1))
527 elfzle1 12341 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑚 ∈ ((𝑡 + 1)...𝑛) → (𝑡 + 1) ≤ 𝑚)
528527adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑡 ∈ ℕ ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → (𝑡 + 1) ≤ 𝑚)
529519, 522, 524, 526, 528ltletrd 10194 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑡 ∈ ℕ ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → 0 < 𝑚)
530518, 529, 401sylanbrc 698 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑡 ∈ ℕ ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → 𝑚 ∈ ℕ)
531530adantlr 751 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑡 ∈ ℕ ∧ 𝑡𝑛) ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → 𝑚 ∈ ℕ)
532531adantlll 754 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → 𝑚 ∈ ℕ)
533172ffvelrnda 6357 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → (𝑓𝑚) ∈ (ℂ × ℂ))
534 ffvelrn 6355 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (( − :(ℂ × ℂ)⟶ℂ ∧ (𝑓𝑚) ∈ (ℂ × ℂ)) → ( − ‘(𝑓𝑚)) ∈ ℂ)
535139, 533, 534sylancr 695 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → ( − ‘(𝑓𝑚)) ∈ ℂ)
536535absge0d 14177 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → 0 ≤ (abs‘( − ‘(𝑓𝑚))))
537 fvco3 6273 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (( − :(ℂ × ℂ)⟶ℂ ∧ (𝑓𝑚) ∈ (ℂ × ℂ)) → ((abs ∘ − )‘(𝑓𝑚)) = (abs‘( − ‘(𝑓𝑚))))
538139, 533, 537sylancr 695 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → ((abs ∘ − )‘(𝑓𝑚)) = (abs‘( − ‘(𝑓𝑚))))
539508, 538eqtrd 2655 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ 𝑓)‘𝑚) = (abs‘( − ‘(𝑓𝑚))))
540536, 539breqtrrd 4679 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → 0 ≤ (((abs ∘ − ) ∘ 𝑓)‘𝑚))
541540ad5ant15 1302 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ ℕ) → 0 ≤ (((abs ∘ − ) ∘ 𝑓)‘𝑚))
542532, 541syldan 487 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → 0 ≤ (((abs ∘ − ) ∘ 𝑓)‘𝑚))
543474, 515, 516, 542sermono 12828 . . . . . . . . . . . . . . . . . . . 20 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑡) ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
544511, 543eqbrtrd 4673 . . . . . . . . . . . . . . . . . . 19 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) → (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
545405ad2antlr 763 . . . . . . . . . . . . . . . . . . 19 (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → 𝑛 ∈ ℝ)
546481adantl 482 . . . . . . . . . . . . . . . . . . 19 (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → 𝑡 ∈ ℝ)
547471, 544, 545, 546ltlecasei 10142 . . . . . . . . . . . . . . . . . 18 (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
548547ralrimiva 2965 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → ∀𝑡 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
549 breq1 4654 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) → (𝑚 ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ↔ (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛)))
550549ralrn 6360 . . . . . . . . . . . . . . . . . . 19 (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))) Fn ℕ → (∀𝑚 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))𝑚 ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ↔ ∀𝑡 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛)))
551357, 550syl 17 . . . . . . . . . . . . . . . . . 18 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → (∀𝑚 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))𝑚 ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ↔ ∀𝑡 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛)))
552551adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (∀𝑚 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))𝑚 ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ↔ ∀𝑡 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛)))
553548, 552mpbird 247 . . . . . . . . . . . . . . . 16 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → ∀𝑚 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))𝑚 ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
554553r19.21bi 2931 . . . . . . . . . . . . . . 15 (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))) → 𝑚 ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
555364, 365, 554lensymd 10185 . . . . . . . . . . . . . 14 (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))) → ¬ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) < 𝑚)
556313, 324, 360, 555supmax 8370 . . . . . . . . . . . . 13 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))), ℝ*, < ) = (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
55752, 556sylan 488 . . . . . . . . . . . 12 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))), ℝ*, < ) = (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
558257, 311, 5573eqtr3rd 2664 . . . . . . . . . . 11 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) = (vol*‘( 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ∪ 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩))))
559 elfznn 12367 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (1...𝑛) → 𝑧 ∈ ℕ)
560166, 65sseldi 3599 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → (𝑓𝑧) ∈ (ℝ × ℝ))
561 1st2nd2 7202 . . . . . . . . . . . . . . . . . . . 20 ((𝑓𝑧) ∈ (ℝ × ℝ) → (𝑓𝑧) = ⟨(1st ‘(𝑓𝑧)), (2nd ‘(𝑓𝑧))⟩)
562561fveq2d 6193 . . . . . . . . . . . . . . . . . . 19 ((𝑓𝑧) ∈ (ℝ × ℝ) → ([,]‘(𝑓𝑧)) = ([,]‘⟨(1st ‘(𝑓𝑧)), (2nd ‘(𝑓𝑧))⟩))
563 df-ov 6650 . . . . . . . . . . . . . . . . . . 19 ((1st ‘(𝑓𝑧))[,](2nd ‘(𝑓𝑧))) = ([,]‘⟨(1st ‘(𝑓𝑧)), (2nd ‘(𝑓𝑧))⟩)
564562, 563syl6eqr 2673 . . . . . . . . . . . . . . . . . 18 ((𝑓𝑧) ∈ (ℝ × ℝ) → ([,]‘(𝑓𝑧)) = ((1st ‘(𝑓𝑧))[,](2nd ‘(𝑓𝑧))))
565 xp1st 7195 . . . . . . . . . . . . . . . . . . 19 ((𝑓𝑧) ∈ (ℝ × ℝ) → (1st ‘(𝑓𝑧)) ∈ ℝ)
566 xp2nd 7196 . . . . . . . . . . . . . . . . . . 19 ((𝑓𝑧) ∈ (ℝ × ℝ) → (2nd ‘(𝑓𝑧)) ∈ ℝ)
567 iccssre 12252 . . . . . . . . . . . . . . . . . . 19 (((1st ‘(𝑓𝑧)) ∈ ℝ ∧ (2nd ‘(𝑓𝑧)) ∈ ℝ) → ((1st ‘(𝑓𝑧))[,](2nd ‘(𝑓𝑧))) ⊆ ℝ)
568565, 566, 567syl2anc 693 . . . . . . . . . . . . . . . . . 18 ((𝑓𝑧) ∈ (ℝ × ℝ) → ((1st ‘(𝑓𝑧))[,](2nd ‘(𝑓𝑧))) ⊆ ℝ)
569564, 568eqsstrd 3637 . . . . . . . . . . . . . . . . 17 ((𝑓𝑧) ∈ (ℝ × ℝ) → ([,]‘(𝑓𝑧)) ⊆ ℝ)
570560, 569syl 17 . . . . . . . . . . . . . . . 16 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → ([,]‘(𝑓𝑧)) ⊆ ℝ)
57152, 559, 570syl2an 494 . . . . . . . . . . . . . . 15 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ (1...𝑛)) → ([,]‘(𝑓𝑧)) ⊆ ℝ)
572571ralrimiva 2965 . . . . . . . . . . . . . 14 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ∀𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ ℝ)
573 iunss 4559 . . . . . . . . . . . . . 14 ( 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ ℝ ↔ ∀𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ ℝ)
574572, 573sylibr 224 . . . . . . . . . . . . 13 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ ℝ)
575574adantr 481 . . . . . . . . . . . 12 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ ℝ)
576 uzid 11699 . . . . . . . . . . . . . . . 16 ((𝑛 + 1) ∈ ℤ → (𝑛 + 1) ∈ (ℤ‘(𝑛 + 1)))
577 ne0i 3919 . . . . . . . . . . . . . . . 16 ((𝑛 + 1) ∈ (ℤ‘(𝑛 + 1)) → (ℤ‘(𝑛 + 1)) ≠ ∅)
578 iunconst 4527 . . . . . . . . . . . . . . . 16 ((ℤ‘(𝑛 + 1)) ≠ ∅ → 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩) = ([,]‘⟨0, 0⟩))
579376, 576, 577, 5784syl 19 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩) = ([,]‘⟨0, 0⟩))
580 iccid 12217 . . . . . . . . . . . . . . . . 17 (0 ∈ ℝ* → (0[,]0) = {0})
581261, 580ax-mp 5 . . . . . . . . . . . . . . . 16 (0[,]0) = {0}
582 df-ov 6650 . . . . . . . . . . . . . . . 16 (0[,]0) = ([,]‘⟨0, 0⟩)
583581, 582eqtr3i 2645 . . . . . . . . . . . . . . 15 {0} = ([,]‘⟨0, 0⟩)
584579, 583syl6eqr 2673 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩) = {0})
585 snssi 4337 . . . . . . . . . . . . . . 15 (0 ∈ ℝ → {0} ⊆ ℝ)
586201, 585ax-mp 5 . . . . . . . . . . . . . 14 {0} ⊆ ℝ
587584, 586syl6eqss 3653 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩) ⊆ ℝ)
588587adantl 482 . . . . . . . . . . . 12 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩) ⊆ ℝ)
589584fveq2d 6193 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (vol*‘ 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩)) = (vol*‘{0}))
590589adantl 482 . . . . . . . . . . . . 13 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (vol*‘ 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩)) = (vol*‘{0}))
591 ovolsn 23257 . . . . . . . . . . . . . 14 (0 ∈ ℝ → (vol*‘{0}) = 0)
592201, 591ax-mp 5 . . . . . . . . . . . . 13 (vol*‘{0}) = 0
593590, 592syl6eq 2671 . . . . . . . . . . . 12 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (vol*‘ 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩)) = 0)
594 ovolunnul 23262 . . . . . . . . . . . 12 (( 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ ℝ ∧ 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩) ⊆ ℝ ∧ (vol*‘ 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩)) = 0) → (vol*‘( 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ∪ 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩))) = (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))
595575, 588, 593, 594syl3anc 1325 . . . . . . . . . . 11 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (vol*‘( 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ∪ 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩))) = (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))
596558, 595eqtrd 2655 . . . . . . . . . 10 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) = (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))
597596breq2d 4663 . . . . . . . . 9 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (𝑀 < (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ↔ 𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)))))
598597biimpd 219 . . . . . . . 8 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (𝑀 < (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) → 𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)))))
599598reximdva 3016 . . . . . . 7 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → (∃𝑛 ∈ ℕ 𝑀 < (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) → ∃𝑛 ∈ ℕ 𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)))))
600599adantl 482 . . . . . 6 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → (∃𝑛 ∈ ℕ 𝑀 < (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) → ∃𝑛 ∈ ℕ 𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)))))
601196, 600mpd 15 . . . . 5 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ∃𝑛 ∈ ℕ 𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))
602 fzfi 12766 . . . . . . . . . 10 (1...𝑛) ∈ Fin
603 icccld 22564 . . . . . . . . . . . . . . 15 (((1st ‘(𝑓𝑧)) ∈ ℝ ∧ (2nd ‘(𝑓𝑧)) ∈ ℝ) → ((1st ‘(𝑓𝑧))[,](2nd ‘(𝑓𝑧))) ∈ (Clsd‘(topGen‘ran (,))))
604565, 566, 603syl2anc 693 . . . . . . . . . . . . . 14 ((𝑓𝑧) ∈ (ℝ × ℝ) → ((1st ‘(𝑓𝑧))[,](2nd ‘(𝑓𝑧))) ∈ (Clsd‘(topGen‘ran (,))))
605564, 604eqeltrd 2700 . . . . . . . . . . . . 13 ((𝑓𝑧) ∈ (ℝ × ℝ) → ([,]‘(𝑓𝑧)) ∈ (Clsd‘(topGen‘ran (,))))
606560, 605syl 17 . . . . . . . . . . . 12 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → ([,]‘(𝑓𝑧)) ∈ (Clsd‘(topGen‘ran (,))))
607559, 606sylan2 491 . . . . . . . . . . 11 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ (1...𝑛)) → ([,]‘(𝑓𝑧)) ∈ (Clsd‘(topGen‘ran (,))))
608607ralrimiva 2965 . . . . . . . . . 10 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ∀𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ∈ (Clsd‘(topGen‘ran (,))))
609 uniretop 22560 . . . . . . . . . . 11 ℝ = (topGen‘ran (,))
610609iuncld 20843 . . . . . . . . . 10 (((topGen‘ran (,)) ∈ Top ∧ (1...𝑛) ∈ Fin ∧ ∀𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ∈ (Clsd‘(topGen‘ran (,)))) → 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ∈ (Clsd‘(topGen‘ran (,))))
6111, 602, 608, 610mp3an12i 1427 . . . . . . . . 9 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ∈ (Clsd‘(topGen‘ran (,))))
612611adantr 481 . . . . . . . 8 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑛 ∈ ℕ ∧ 𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))) → 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ∈ (Clsd‘(topGen‘ran (,))))
613 fveq2 6189 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑓𝑧) → ([,]‘𝑏) = ([,]‘(𝑓𝑧)))
614613sseq1d 3630 . . . . . . . . . . . . . . 15 (𝑏 = (𝑓𝑧) → (([,]‘𝑏) ⊆ 𝐴 ↔ ([,]‘(𝑓𝑧)) ⊆ 𝐴))
615614elrab 3361 . . . . . . . . . . . . . 14 ((𝑓𝑧) ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ↔ ((𝑓𝑧) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∧ ([,]‘(𝑓𝑧)) ⊆ 𝐴))
616615simprbi 480 . . . . . . . . . . . . 13 ((𝑓𝑧) ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} → ([,]‘(𝑓𝑧)) ⊆ 𝐴)
61765, 73, 6163syl 18 . . . . . . . . . . . 12 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → ([,]‘(𝑓𝑧)) ⊆ 𝐴)
618559, 617sylan2 491 . . . . . . . . . . 11 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ (1...𝑛)) → ([,]‘(𝑓𝑧)) ⊆ 𝐴)
619618ralrimiva 2965 . . . . . . . . . 10 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ∀𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ 𝐴)
620 iunss 4559 . . . . . . . . . 10 ( 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ 𝐴 ↔ ∀𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ 𝐴)
621619, 620sylibr 224 . . . . . . . . 9 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ 𝐴)
622621adantr 481 . . . . . . . 8 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑛 ∈ ℕ ∧ 𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))) → 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ 𝐴)
623 simprr 796 . . . . . . . 8 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑛 ∈ ℕ ∧ 𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))) → 𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))
624 sseq1 3624 . . . . . . . . . 10 (𝑠 = 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) → (𝑠𝐴 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ 𝐴))
625 fveq2 6189 . . . . . . . . . . 11 (𝑠 = 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) → (vol*‘𝑠) = (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))
626625breq2d 4663 . . . . . . . . . 10 (𝑠 = 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) → (𝑀 < (vol*‘𝑠) ↔ 𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)))))
627624, 626anbi12d 747 . . . . . . . . 9 (𝑠 = 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) → ((𝑠𝐴𝑀 < (vol*‘𝑠)) ↔ ( 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ 𝐴𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))))
628627rspcev 3307 . . . . . . . 8 (( 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ∈ (Clsd‘(topGen‘ran (,))) ∧ ( 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ 𝐴𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴𝑀 < (vol*‘𝑠)))
629612, 622, 623, 628syl12anc 1323 . . . . . . 7 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑛 ∈ ℕ ∧ 𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴𝑀 < (vol*‘𝑠)))
63052, 629sylan 488 . . . . . 6 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑛 ∈ ℕ ∧ 𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴𝑀 < (vol*‘𝑠)))
631630adantll 750 . . . . 5 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) ∧ (𝑛 ∈ ℕ ∧ 𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴𝑀 < (vol*‘𝑠)))
632601, 631rexlimddv 3033 . . . 4 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴𝑀 < (vol*‘𝑠)))
633632adantlr 751 . . 3 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴𝑀 < (vol*‘𝑠)))
63417, 633exlimddv 1862 . 2 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝐴 ≠ ∅) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴𝑀 < (vol*‘𝑠)))
63515, 634pm2.61dane 2880 1 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴𝑀 < (vol*‘𝑠)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3o 1036  w3a 1037   = wceq 1482  wex 1703  wcel 1989  wne 2793  wral 2911  wrex 2912  {crab 2915  Vcvv 3198  cun 3570  cin 3571  wss 3572  c0 3913  ifcif 4084  𝒫 cpw 4156  {csn 4175  cop 4181   cuni 4434   ciun 4518  Disj wdisj 4618   class class class wbr 4651  cmpt 4727   Or wor 5032   × cxp 5110  ran crn 5113  cima 5115  ccom 5116   Fn wfn 5881  wf 5882  1-1wf1 5883  ontowfo 5884  1-1-ontowf1o 5885  cfv 5886  (class class class)co 6647  cmpt2 6649  1st c1st 7163  2nd c2nd 7164  Fincfn 7952  supcsup 8343  cc 9931  cr 9932  0cc0 9933  1c1 9934   + caddc 9936  *cxr 10070   < clt 10071  cle 10072  cmin 10263   / cdiv 10681  cn 11017  2c2 11067  0cn0 11289  cz 11374  cuz 11684  (,)cioo 12172  [,]cicc 12175  ...cfz 12323  ..^cfzo 12461  seqcseq 12796  cexp 12855  abscabs 13968  topGenctg 16092  Topctop 20692  Clsdccld 20814  vol*covol 23225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-inf2 8535  ax-cnex 9989  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010  ax-pre-sup 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-fal 1488  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rmo 2919  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-int 4474  df-iun 4520  df-iin 4521  df-disj 4619  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-se 5072  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-isom 5895  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-of 6894  df-om 7063  df-1st 7165  df-2nd 7166  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-1o 7557  df-2o 7558  df-oadd 7561  df-omul 7562  df-er 7739  df-map 7856  df-pm 7857  df-en 7953  df-dom 7954  df-sdom 7955  df-fin 7956  df-fi 8314  df-sup 8345  df-inf 8346  df-oi 8412  df-card 8762  df-acn 8765  df-cda 8987  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-div 10682  df-nn 11018  df-2 11076  df-3 11077  df-n0 11290  df-z 11375  df-uz 11685  df-q 11786  df-rp 11830  df-xneg 11943  df-xadd 11944  df-xmul 11945  df-ioo 12176  df-ico 12178  df-icc 12179  df-fz 12324  df-fzo 12462  df-fl 12588  df-seq 12797  df-exp 12856  df-hash 13113  df-cj 13833  df-re 13834  df-im 13835  df-sqrt 13969  df-abs 13970  df-clim 14213  df-rlim 14214  df-sum 14411  df-rest 16077  df-topgen 16098  df-psmet 19732  df-xmet 19733  df-met 19734  df-bl 19735  df-mopn 19736  df-top 20693  df-topon 20710  df-bases 20744  df-cld 20817  df-cmp 21184  df-conn