Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddss1 Structured version   Visualization version   GIF version

Theorem paddss1 36986
Description: Subset law for projective subspace sum. (unss1 4148 analog.) (Contributed by NM, 7-Mar-2012.)
Hypotheses
Ref Expression
padd0.a 𝐴 = (Atoms‘𝐾)
padd0.p + = (+𝑃𝐾)
Assertion
Ref Expression
paddss1 ((𝐾𝐵𝑌𝐴𝑍𝐴) → (𝑋𝑌 → (𝑋 + 𝑍) ⊆ (𝑌 + 𝑍)))

Proof of Theorem paddss1
Dummy variables 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3954 . . . . . . 7 (𝑋𝑌 → (𝑝𝑋𝑝𝑌))
21orim1d 962 . . . . . 6 (𝑋𝑌 → ((𝑝𝑋𝑝𝑍) → (𝑝𝑌𝑝𝑍)))
3 ssrexv 4027 . . . . . . 7 (𝑋𝑌 → (∃𝑞𝑋𝑟𝑍 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟) → ∃𝑞𝑌𝑟𝑍 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))
43anim2d 613 . . . . . 6 (𝑋𝑌 → ((𝑝𝐴 ∧ ∃𝑞𝑋𝑟𝑍 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)) → (𝑝𝐴 ∧ ∃𝑞𝑌𝑟𝑍 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟))))
52, 4orim12d 961 . . . . 5 (𝑋𝑌 → (((𝑝𝑋𝑝𝑍) ∨ (𝑝𝐴 ∧ ∃𝑞𝑋𝑟𝑍 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟))) → ((𝑝𝑌𝑝𝑍) ∨ (𝑝𝐴 ∧ ∃𝑞𝑌𝑟𝑍 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
65adantl 484 . . . 4 (((𝐾𝐵𝑌𝐴𝑍𝐴) ∧ 𝑋𝑌) → (((𝑝𝑋𝑝𝑍) ∨ (𝑝𝐴 ∧ ∃𝑞𝑋𝑟𝑍 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟))) → ((𝑝𝑌𝑝𝑍) ∨ (𝑝𝐴 ∧ ∃𝑞𝑌𝑟𝑍 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
7 simpl1 1186 . . . . 5 (((𝐾𝐵𝑌𝐴𝑍𝐴) ∧ 𝑋𝑌) → 𝐾𝐵)
8 sstr 3968 . . . . . . 7 ((𝑋𝑌𝑌𝐴) → 𝑋𝐴)
983ad2antr2 1184 . . . . . 6 ((𝑋𝑌 ∧ (𝐾𝐵𝑌𝐴𝑍𝐴)) → 𝑋𝐴)
109ancoms 461 . . . . 5 (((𝐾𝐵𝑌𝐴𝑍𝐴) ∧ 𝑋𝑌) → 𝑋𝐴)
11 simpl3 1188 . . . . 5 (((𝐾𝐵𝑌𝐴𝑍𝐴) ∧ 𝑋𝑌) → 𝑍𝐴)
12 eqid 2820 . . . . . 6 (le‘𝐾) = (le‘𝐾)
13 eqid 2820 . . . . . 6 (join‘𝐾) = (join‘𝐾)
14 padd0.a . . . . . 6 𝐴 = (Atoms‘𝐾)
15 padd0.p . . . . . 6 + = (+𝑃𝐾)
1612, 13, 14, 15elpadd 36968 . . . . 5 ((𝐾𝐵𝑋𝐴𝑍𝐴) → (𝑝 ∈ (𝑋 + 𝑍) ↔ ((𝑝𝑋𝑝𝑍) ∨ (𝑝𝐴 ∧ ∃𝑞𝑋𝑟𝑍 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
177, 10, 11, 16syl3anc 1366 . . . 4 (((𝐾𝐵𝑌𝐴𝑍𝐴) ∧ 𝑋𝑌) → (𝑝 ∈ (𝑋 + 𝑍) ↔ ((𝑝𝑋𝑝𝑍) ∨ (𝑝𝐴 ∧ ∃𝑞𝑋𝑟𝑍 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
1812, 13, 14, 15elpadd 36968 . . . . 5 ((𝐾𝐵𝑌𝐴𝑍𝐴) → (𝑝 ∈ (𝑌 + 𝑍) ↔ ((𝑝𝑌𝑝𝑍) ∨ (𝑝𝐴 ∧ ∃𝑞𝑌𝑟𝑍 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
1918adantr 483 . . . 4 (((𝐾𝐵𝑌𝐴𝑍𝐴) ∧ 𝑋𝑌) → (𝑝 ∈ (𝑌 + 𝑍) ↔ ((𝑝𝑌𝑝𝑍) ∨ (𝑝𝐴 ∧ ∃𝑞𝑌𝑟𝑍 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
206, 17, 193imtr4d 296 . . 3 (((𝐾𝐵𝑌𝐴𝑍𝐴) ∧ 𝑋𝑌) → (𝑝 ∈ (𝑋 + 𝑍) → 𝑝 ∈ (𝑌 + 𝑍)))
2120ssrdv 3966 . 2 (((𝐾𝐵𝑌𝐴𝑍𝐴) ∧ 𝑋𝑌) → (𝑋 + 𝑍) ⊆ (𝑌 + 𝑍))
2221ex 415 1 ((𝐾𝐵𝑌𝐴𝑍𝐴) → (𝑋𝑌 → (𝑋 + 𝑍) ⊆ (𝑌 + 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3a 1082   = wceq 1536  wcel 2113  wrex 3138  wss 3929   class class class wbr 5059  cfv 6348  (class class class)co 7149  lecple 16567  joincjn 17549  Atomscatm 36432  +𝑃cpadd 36964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-ral 3142  df-rex 3143  df-reu 3144  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7152  df-oprab 7153  df-mpo 7154  df-1st 7682  df-2nd 7683  df-padd 36965
This theorem is referenced by:  paddss12  36988  paddasslem12  37000  pmod1i  37017  pl42lem3N  37150
  Copyright terms: Public domain W3C validator