Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimltpnf2 Structured version   Visualization version   GIF version

Theorem pimltpnf2 43011
Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +∞, is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
pimltpnf2.1 𝑥𝐹
pimltpnf2.2 (𝜑𝐹:𝐴⟶ℝ)
Assertion
Ref Expression
pimltpnf2 (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) < +∞} = 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)

Proof of Theorem pimltpnf2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2977 . . . 4 𝑥𝐴
2 nfcv 2977 . . . 4 𝑦𝐴
3 nfv 1915 . . . 4 𝑦(𝐹𝑥) < +∞
4 pimltpnf2.1 . . . . . 6 𝑥𝐹
5 nfcv 2977 . . . . . 6 𝑥𝑦
64, 5nffv 6680 . . . . 5 𝑥(𝐹𝑦)
7 nfcv 2977 . . . . 5 𝑥 <
8 nfcv 2977 . . . . 5 𝑥+∞
96, 7, 8nfbr 5113 . . . 4 𝑥(𝐹𝑦) < +∞
10 fveq2 6670 . . . . 5 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
1110breq1d 5076 . . . 4 (𝑥 = 𝑦 → ((𝐹𝑥) < +∞ ↔ (𝐹𝑦) < +∞))
121, 2, 3, 9, 11cbvrabw 3489 . . 3 {𝑥𝐴 ∣ (𝐹𝑥) < +∞} = {𝑦𝐴 ∣ (𝐹𝑦) < +∞}
1312a1i 11 . 2 (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) < +∞} = {𝑦𝐴 ∣ (𝐹𝑦) < +∞})
14 nfv 1915 . . 3 𝑦𝜑
15 pimltpnf2.2 . . . 4 (𝜑𝐹:𝐴⟶ℝ)
1615ffvelrnda 6851 . . 3 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ ℝ)
1714, 16pimltpnf 43004 . 2 (𝜑 → {𝑦𝐴 ∣ (𝐹𝑦) < +∞} = 𝐴)
1813, 17eqtrd 2856 1 (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) < +∞} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wnfc 2961  {crab 3142   class class class wbr 5066  wf 6351  cfv 6355  cr 10536  +∞cpnf 10672   < clt 10675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-fv 6363  df-pnf 10677  df-xr 10679  df-ltxr 10680
This theorem is referenced by:  smfpimltxr  43044
  Copyright terms: Public domain W3C validator