Step | Hyp | Ref
| Expression |
1 | | pw2f1o.3 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈ 𝑊) |
2 | | prid2g 4432 |
. . . . . . . . . 10
⊢ (𝐶 ∈ 𝑊 → 𝐶 ∈ {𝐵, 𝐶}) |
3 | 1, 2 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈ {𝐵, 𝐶}) |
4 | | pw2f1o.2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ 𝑊) |
5 | | prid1g 4431 |
. . . . . . . . . 10
⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ {𝐵, 𝐶}) |
6 | 4, 5 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ {𝐵, 𝐶}) |
7 | 3, 6 | ifcld 4267 |
. . . . . . . 8
⊢ (𝜑 → if(𝑦 ∈ 𝑆, 𝐶, 𝐵) ∈ {𝐵, 𝐶}) |
8 | 7 | adantr 472 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → if(𝑦 ∈ 𝑆, 𝐶, 𝐵) ∈ {𝐵, 𝐶}) |
9 | | eqid 2752 |
. . . . . . 7
⊢ (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)) = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)) |
10 | 8, 9 | fmptd 6540 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)):𝐴⟶{𝐵, 𝐶}) |
11 | 10 | adantr 472 |
. . . . 5
⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) → (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)):𝐴⟶{𝐵, 𝐶}) |
12 | | simprr 813 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) → 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵))) |
13 | 12 | feq1d 6183 |
. . . . 5
⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) → (𝐺:𝐴⟶{𝐵, 𝐶} ↔ (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)):𝐴⟶{𝐵, 𝐶})) |
14 | 11, 13 | mpbird 247 |
. . . 4
⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) → 𝐺:𝐴⟶{𝐵, 𝐶}) |
15 | | iftrue 4228 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝑆 → if(𝑥 ∈ 𝑆, 𝐶, 𝐵) = 𝐶) |
16 | | pw2f1o.4 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ≠ 𝐶) |
17 | 16 | ad2antrr 764 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) ∧ 𝑥 ∈ 𝐴) → 𝐵 ≠ 𝐶) |
18 | | iffalse 4231 |
. . . . . . . . . . . 12
⊢ (¬
𝑥 ∈ 𝑆 → if(𝑥 ∈ 𝑆, 𝐶, 𝐵) = 𝐵) |
19 | 18 | neeq1d 2983 |
. . . . . . . . . . 11
⊢ (¬
𝑥 ∈ 𝑆 → (if(𝑥 ∈ 𝑆, 𝐶, 𝐵) ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) |
20 | 17, 19 | syl5ibrcom 237 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) ∧ 𝑥 ∈ 𝐴) → (¬ 𝑥 ∈ 𝑆 → if(𝑥 ∈ 𝑆, 𝐶, 𝐵) ≠ 𝐶)) |
21 | 20 | necon4bd 2944 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) ∧ 𝑥 ∈ 𝐴) → (if(𝑥 ∈ 𝑆, 𝐶, 𝐵) = 𝐶 → 𝑥 ∈ 𝑆)) |
22 | 15, 21 | impbid2 216 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝑆 ↔ if(𝑥 ∈ 𝑆, 𝐶, 𝐵) = 𝐶)) |
23 | | simplrr 820 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) ∧ 𝑥 ∈ 𝐴) → 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵))) |
24 | 23 | fveq1d 6346 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = ((𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵))‘𝑥)) |
25 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐴) |
26 | 3, 6 | ifcld 4267 |
. . . . . . . . . . . 12
⊢ (𝜑 → if(𝑥 ∈ 𝑆, 𝐶, 𝐵) ∈ {𝐵, 𝐶}) |
27 | 26 | adantr 472 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) → if(𝑥 ∈ 𝑆, 𝐶, 𝐵) ∈ {𝐵, 𝐶}) |
28 | | eleq1w 2814 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝑆 ↔ 𝑥 ∈ 𝑆)) |
29 | 28 | ifbid 4244 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑥 → if(𝑦 ∈ 𝑆, 𝐶, 𝐵) = if(𝑥 ∈ 𝑆, 𝐶, 𝐵)) |
30 | 29, 9 | fvmptg 6434 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐴 ∧ if(𝑥 ∈ 𝑆, 𝐶, 𝐵) ∈ {𝐵, 𝐶}) → ((𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵))‘𝑥) = if(𝑥 ∈ 𝑆, 𝐶, 𝐵)) |
31 | 25, 27, 30 | syl2anr 496 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) ∧ 𝑥 ∈ 𝐴) → ((𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵))‘𝑥) = if(𝑥 ∈ 𝑆, 𝐶, 𝐵)) |
32 | 24, 31 | eqtrd 2786 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = if(𝑥 ∈ 𝑆, 𝐶, 𝐵)) |
33 | 32 | eqeq1d 2754 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) ∧ 𝑥 ∈ 𝐴) → ((𝐺‘𝑥) = 𝐶 ↔ if(𝑥 ∈ 𝑆, 𝐶, 𝐵) = 𝐶)) |
34 | 22, 33 | bitr4d 271 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝑆 ↔ (𝐺‘𝑥) = 𝐶)) |
35 | 34 | pm5.32da 676 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝑆) ↔ (𝑥 ∈ 𝐴 ∧ (𝐺‘𝑥) = 𝐶))) |
36 | | simprl 811 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) → 𝑆 ⊆ 𝐴) |
37 | 36 | sseld 3735 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) → (𝑥 ∈ 𝑆 → 𝑥 ∈ 𝐴)) |
38 | 37 | pm4.71rd 670 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) → (𝑥 ∈ 𝑆 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝑆))) |
39 | | ffn 6198 |
. . . . . . . 8
⊢ (𝐺:𝐴⟶{𝐵, 𝐶} → 𝐺 Fn 𝐴) |
40 | 14, 39 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) → 𝐺 Fn 𝐴) |
41 | | fniniseg 6493 |
. . . . . . 7
⊢ (𝐺 Fn 𝐴 → (𝑥 ∈ (◡𝐺 “ {𝐶}) ↔ (𝑥 ∈ 𝐴 ∧ (𝐺‘𝑥) = 𝐶))) |
42 | 40, 41 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) → (𝑥 ∈ (◡𝐺 “ {𝐶}) ↔ (𝑥 ∈ 𝐴 ∧ (𝐺‘𝑥) = 𝐶))) |
43 | 35, 38, 42 | 3bitr4d 300 |
. . . . 5
⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) → (𝑥 ∈ 𝑆 ↔ 𝑥 ∈ (◡𝐺 “ {𝐶}))) |
44 | 43 | eqrdv 2750 |
. . . 4
⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) → 𝑆 = (◡𝐺 “ {𝐶})) |
45 | 14, 44 | jca 555 |
. . 3
⊢ ((𝜑 ∧ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) → (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) |
46 | | simprr 813 |
. . . . 5
⊢ ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) → 𝑆 = (◡𝐺 “ {𝐶})) |
47 | | cnvimass 5635 |
. . . . . 6
⊢ (◡𝐺 “ {𝐶}) ⊆ dom 𝐺 |
48 | | fdm 6204 |
. . . . . . 7
⊢ (𝐺:𝐴⟶{𝐵, 𝐶} → dom 𝐺 = 𝐴) |
49 | 48 | ad2antrl 766 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) → dom 𝐺 = 𝐴) |
50 | 47, 49 | syl5sseq 3786 |
. . . . 5
⊢ ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) → (◡𝐺 “ {𝐶}) ⊆ 𝐴) |
51 | 46, 50 | eqsstrd 3772 |
. . . 4
⊢ ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) → 𝑆 ⊆ 𝐴) |
52 | 39 | ad2antrl 766 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) → 𝐺 Fn 𝐴) |
53 | | dffn5 6395 |
. . . . . 6
⊢ (𝐺 Fn 𝐴 ↔ 𝐺 = (𝑦 ∈ 𝐴 ↦ (𝐺‘𝑦))) |
54 | 52, 53 | sylib 208 |
. . . . 5
⊢ ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) → 𝐺 = (𝑦 ∈ 𝐴 ↦ (𝐺‘𝑦))) |
55 | | simplrr 820 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) → 𝑆 = (◡𝐺 “ {𝐶})) |
56 | 55 | eleq2d 2817 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) → (𝑦 ∈ 𝑆 ↔ 𝑦 ∈ (◡𝐺 “ {𝐶}))) |
57 | | fniniseg 6493 |
. . . . . . . . . . . 12
⊢ (𝐺 Fn 𝐴 → (𝑦 ∈ (◡𝐺 “ {𝐶}) ↔ (𝑦 ∈ 𝐴 ∧ (𝐺‘𝑦) = 𝐶))) |
58 | 52, 57 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) → (𝑦 ∈ (◡𝐺 “ {𝐶}) ↔ (𝑦 ∈ 𝐴 ∧ (𝐺‘𝑦) = 𝐶))) |
59 | 58 | baibd 986 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) → (𝑦 ∈ (◡𝐺 “ {𝐶}) ↔ (𝐺‘𝑦) = 𝐶)) |
60 | 56, 59 | bitrd 268 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) → (𝑦 ∈ 𝑆 ↔ (𝐺‘𝑦) = 𝐶)) |
61 | 60 | biimpa 502 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) ∧ 𝑦 ∈ 𝑆) → (𝐺‘𝑦) = 𝐶) |
62 | | iftrue 4228 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝑆 → if(𝑦 ∈ 𝑆, 𝐶, 𝐵) = 𝐶) |
63 | 62 | adantl 473 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) ∧ 𝑦 ∈ 𝑆) → if(𝑦 ∈ 𝑆, 𝐶, 𝐵) = 𝐶) |
64 | 61, 63 | eqtr4d 2789 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) ∧ 𝑦 ∈ 𝑆) → (𝐺‘𝑦) = if(𝑦 ∈ 𝑆, 𝐶, 𝐵)) |
65 | | simprl 811 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) → 𝐺:𝐴⟶{𝐵, 𝐶}) |
66 | 65 | ffvelrnda 6514 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) → (𝐺‘𝑦) ∈ {𝐵, 𝐶}) |
67 | | fvex 6354 |
. . . . . . . . . . . . . 14
⊢ (𝐺‘𝑦) ∈ V |
68 | 67 | elpr 4335 |
. . . . . . . . . . . . 13
⊢ ((𝐺‘𝑦) ∈ {𝐵, 𝐶} ↔ ((𝐺‘𝑦) = 𝐵 ∨ (𝐺‘𝑦) = 𝐶)) |
69 | 66, 68 | sylib 208 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) → ((𝐺‘𝑦) = 𝐵 ∨ (𝐺‘𝑦) = 𝐶)) |
70 | 69 | ord 391 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) → (¬ (𝐺‘𝑦) = 𝐵 → (𝐺‘𝑦) = 𝐶)) |
71 | 70, 60 | sylibrd 249 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) → (¬ (𝐺‘𝑦) = 𝐵 → 𝑦 ∈ 𝑆)) |
72 | 71 | con1d 139 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) → (¬ 𝑦 ∈ 𝑆 → (𝐺‘𝑦) = 𝐵)) |
73 | 72 | imp 444 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) ∧ ¬ 𝑦 ∈ 𝑆) → (𝐺‘𝑦) = 𝐵) |
74 | | iffalse 4231 |
. . . . . . . . 9
⊢ (¬
𝑦 ∈ 𝑆 → if(𝑦 ∈ 𝑆, 𝐶, 𝐵) = 𝐵) |
75 | 74 | adantl 473 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) ∧ ¬ 𝑦 ∈ 𝑆) → if(𝑦 ∈ 𝑆, 𝐶, 𝐵) = 𝐵) |
76 | 73, 75 | eqtr4d 2789 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) ∧ ¬ 𝑦 ∈ 𝑆) → (𝐺‘𝑦) = if(𝑦 ∈ 𝑆, 𝐶, 𝐵)) |
77 | 64, 76 | pm2.61dan 867 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) ∧ 𝑦 ∈ 𝐴) → (𝐺‘𝑦) = if(𝑦 ∈ 𝑆, 𝐶, 𝐵)) |
78 | 77 | mpteq2dva 4888 |
. . . . 5
⊢ ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) → (𝑦 ∈ 𝐴 ↦ (𝐺‘𝑦)) = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵))) |
79 | 54, 78 | eqtrd 2786 |
. . . 4
⊢ ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) → 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵))) |
80 | 51, 79 | jca 555 |
. . 3
⊢ ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶}))) → (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) |
81 | 45, 80 | impbida 913 |
. 2
⊢ (𝜑 → ((𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵))) ↔ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶})))) |
82 | | pw2f1o.1 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
83 | | elpw2g 4968 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → (𝑆 ∈ 𝒫 𝐴 ↔ 𝑆 ⊆ 𝐴)) |
84 | 82, 83 | syl 17 |
. . 3
⊢ (𝜑 → (𝑆 ∈ 𝒫 𝐴 ↔ 𝑆 ⊆ 𝐴)) |
85 | | eleq1w 2814 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → (𝑧 ∈ 𝑆 ↔ 𝑦 ∈ 𝑆)) |
86 | 85 | ifbid 4244 |
. . . . . 6
⊢ (𝑧 = 𝑦 → if(𝑧 ∈ 𝑆, 𝐶, 𝐵) = if(𝑦 ∈ 𝑆, 𝐶, 𝐵)) |
87 | 86 | cbvmptv 4894 |
. . . . 5
⊢ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑆, 𝐶, 𝐵)) = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)) |
88 | 87 | a1i 11 |
. . . 4
⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑆, 𝐶, 𝐵)) = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵))) |
89 | 88 | eqeq2d 2762 |
. . 3
⊢ (𝜑 → (𝐺 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑆, 𝐶, 𝐵)) ↔ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵)))) |
90 | 84, 89 | anbi12d 749 |
. 2
⊢ (𝜑 → ((𝑆 ∈ 𝒫 𝐴 ∧ 𝐺 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑆, 𝐶, 𝐵))) ↔ (𝑆 ⊆ 𝐴 ∧ 𝐺 = (𝑦 ∈ 𝐴 ↦ if(𝑦 ∈ 𝑆, 𝐶, 𝐵))))) |
91 | | prex 5050 |
. . . 4
⊢ {𝐵, 𝐶} ∈ V |
92 | | elmapg 8028 |
. . . 4
⊢ (({𝐵, 𝐶} ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐺 ∈ ({𝐵, 𝐶} ↑𝑚 𝐴) ↔ 𝐺:𝐴⟶{𝐵, 𝐶})) |
93 | 91, 82, 92 | sylancr 698 |
. . 3
⊢ (𝜑 → (𝐺 ∈ ({𝐵, 𝐶} ↑𝑚 𝐴) ↔ 𝐺:𝐴⟶{𝐵, 𝐶})) |
94 | 93 | anbi1d 743 |
. 2
⊢ (𝜑 → ((𝐺 ∈ ({𝐵, 𝐶} ↑𝑚 𝐴) ∧ 𝑆 = (◡𝐺 “ {𝐶})) ↔ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (◡𝐺 “ {𝐶})))) |
95 | 81, 90, 94 | 3bitr4d 300 |
1
⊢ (𝜑 → ((𝑆 ∈ 𝒫 𝐴 ∧ 𝐺 = (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑆, 𝐶, 𝐵))) ↔ (𝐺 ∈ ({𝐵, 𝐶} ↑𝑚 𝐴) ∧ 𝑆 = (◡𝐺 “ {𝐶})))) |