MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pw2f1olem Structured version   Visualization version   GIF version

Theorem pw2f1olem 8009
Description: Lemma for pw2f1o 8010. (Contributed by Mario Carneiro, 6-Oct-2014.)
Hypotheses
Ref Expression
pw2f1o.1 (𝜑𝐴𝑉)
pw2f1o.2 (𝜑𝐵𝑊)
pw2f1o.3 (𝜑𝐶𝑊)
pw2f1o.4 (𝜑𝐵𝐶)
Assertion
Ref Expression
pw2f1olem (𝜑 → ((𝑆 ∈ 𝒫 𝐴𝐺 = (𝑧𝐴 ↦ if(𝑧𝑆, 𝐶, 𝐵))) ↔ (𝐺 ∈ ({𝐵, 𝐶} ↑𝑚 𝐴) ∧ 𝑆 = (𝐺 “ {𝐶}))))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑧,𝐶   𝑧,𝑆
Allowed substitution hints:   𝜑(𝑧)   𝐺(𝑧)   𝑉(𝑧)   𝑊(𝑧)

Proof of Theorem pw2f1olem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pw2f1o.3 . . . . . . . . . 10 (𝜑𝐶𝑊)
2 prid2g 4271 . . . . . . . . . 10 (𝐶𝑊𝐶 ∈ {𝐵, 𝐶})
31, 2syl 17 . . . . . . . . 9 (𝜑𝐶 ∈ {𝐵, 𝐶})
4 pw2f1o.2 . . . . . . . . . 10 (𝜑𝐵𝑊)
5 prid1g 4270 . . . . . . . . . 10 (𝐵𝑊𝐵 ∈ {𝐵, 𝐶})
64, 5syl 17 . . . . . . . . 9 (𝜑𝐵 ∈ {𝐵, 𝐶})
73, 6ifcld 4108 . . . . . . . 8 (𝜑 → if(𝑦𝑆, 𝐶, 𝐵) ∈ {𝐵, 𝐶})
87adantr 481 . . . . . . 7 ((𝜑𝑦𝐴) → if(𝑦𝑆, 𝐶, 𝐵) ∈ {𝐵, 𝐶})
9 eqid 2626 . . . . . . 7 (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)) = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵))
108, 9fmptd 6341 . . . . . 6 (𝜑 → (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)):𝐴⟶{𝐵, 𝐶})
1110adantr 481 . . . . 5 ((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) → (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)):𝐴⟶{𝐵, 𝐶})
12 simprr 795 . . . . . 6 ((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) → 𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))
1312feq1d 5989 . . . . 5 ((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) → (𝐺:𝐴⟶{𝐵, 𝐶} ↔ (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)):𝐴⟶{𝐵, 𝐶}))
1411, 13mpbird 247 . . . 4 ((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) → 𝐺:𝐴⟶{𝐵, 𝐶})
15 iftrue 4069 . . . . . . . . 9 (𝑥𝑆 → if(𝑥𝑆, 𝐶, 𝐵) = 𝐶)
16 pw2f1o.4 . . . . . . . . . . . 12 (𝜑𝐵𝐶)
1716ad2antrr 761 . . . . . . . . . . 11 (((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) ∧ 𝑥𝐴) → 𝐵𝐶)
18 iffalse 4072 . . . . . . . . . . . 12 𝑥𝑆 → if(𝑥𝑆, 𝐶, 𝐵) = 𝐵)
1918neeq1d 2855 . . . . . . . . . . 11 𝑥𝑆 → (if(𝑥𝑆, 𝐶, 𝐵) ≠ 𝐶𝐵𝐶))
2017, 19syl5ibrcom 237 . . . . . . . . . 10 (((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) ∧ 𝑥𝐴) → (¬ 𝑥𝑆 → if(𝑥𝑆, 𝐶, 𝐵) ≠ 𝐶))
2120necon4bd 2816 . . . . . . . . 9 (((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) ∧ 𝑥𝐴) → (if(𝑥𝑆, 𝐶, 𝐵) = 𝐶𝑥𝑆))
2215, 21impbid2 216 . . . . . . . 8 (((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) ∧ 𝑥𝐴) → (𝑥𝑆 ↔ if(𝑥𝑆, 𝐶, 𝐵) = 𝐶))
23 simplrr 800 . . . . . . . . . . 11 (((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) ∧ 𝑥𝐴) → 𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))
2423fveq1d 6152 . . . . . . . . . 10 (((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) ∧ 𝑥𝐴) → (𝐺𝑥) = ((𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵))‘𝑥))
25 id 22 . . . . . . . . . . 11 (𝑥𝐴𝑥𝐴)
263, 6ifcld 4108 . . . . . . . . . . . 12 (𝜑 → if(𝑥𝑆, 𝐶, 𝐵) ∈ {𝐵, 𝐶})
2726adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) → if(𝑥𝑆, 𝐶, 𝐵) ∈ {𝐵, 𝐶})
28 eleq1 2692 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (𝑦𝑆𝑥𝑆))
2928ifbid 4085 . . . . . . . . . . . 12 (𝑦 = 𝑥 → if(𝑦𝑆, 𝐶, 𝐵) = if(𝑥𝑆, 𝐶, 𝐵))
3029, 9fvmptg 6238 . . . . . . . . . . 11 ((𝑥𝐴 ∧ if(𝑥𝑆, 𝐶, 𝐵) ∈ {𝐵, 𝐶}) → ((𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵))‘𝑥) = if(𝑥𝑆, 𝐶, 𝐵))
3125, 27, 30syl2anr 495 . . . . . . . . . 10 (((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) ∧ 𝑥𝐴) → ((𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵))‘𝑥) = if(𝑥𝑆, 𝐶, 𝐵))
3224, 31eqtrd 2660 . . . . . . . . 9 (((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) ∧ 𝑥𝐴) → (𝐺𝑥) = if(𝑥𝑆, 𝐶, 𝐵))
3332eqeq1d 2628 . . . . . . . 8 (((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) ∧ 𝑥𝐴) → ((𝐺𝑥) = 𝐶 ↔ if(𝑥𝑆, 𝐶, 𝐵) = 𝐶))
3422, 33bitr4d 271 . . . . . . 7 (((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) ∧ 𝑥𝐴) → (𝑥𝑆 ↔ (𝐺𝑥) = 𝐶))
3534pm5.32da 672 . . . . . 6 ((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) → ((𝑥𝐴𝑥𝑆) ↔ (𝑥𝐴 ∧ (𝐺𝑥) = 𝐶)))
36 simprl 793 . . . . . . . 8 ((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) → 𝑆𝐴)
3736sseld 3587 . . . . . . 7 ((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) → (𝑥𝑆𝑥𝐴))
3837pm4.71rd 666 . . . . . 6 ((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) → (𝑥𝑆 ↔ (𝑥𝐴𝑥𝑆)))
39 ffn 6004 . . . . . . . 8 (𝐺:𝐴⟶{𝐵, 𝐶} → 𝐺 Fn 𝐴)
4014, 39syl 17 . . . . . . 7 ((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) → 𝐺 Fn 𝐴)
41 fniniseg 6295 . . . . . . 7 (𝐺 Fn 𝐴 → (𝑥 ∈ (𝐺 “ {𝐶}) ↔ (𝑥𝐴 ∧ (𝐺𝑥) = 𝐶)))
4240, 41syl 17 . . . . . 6 ((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) → (𝑥 ∈ (𝐺 “ {𝐶}) ↔ (𝑥𝐴 ∧ (𝐺𝑥) = 𝐶)))
4335, 38, 423bitr4d 300 . . . . 5 ((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) → (𝑥𝑆𝑥 ∈ (𝐺 “ {𝐶})))
4443eqrdv 2624 . . . 4 ((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) → 𝑆 = (𝐺 “ {𝐶}))
4514, 44jca 554 . . 3 ((𝜑 ∧ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))) → (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶})))
46 simprr 795 . . . . 5 ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) → 𝑆 = (𝐺 “ {𝐶}))
47 cnvimass 5448 . . . . . 6 (𝐺 “ {𝐶}) ⊆ dom 𝐺
48 fdm 6010 . . . . . . 7 (𝐺:𝐴⟶{𝐵, 𝐶} → dom 𝐺 = 𝐴)
4948ad2antrl 763 . . . . . 6 ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) → dom 𝐺 = 𝐴)
5047, 49syl5sseq 3637 . . . . 5 ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) → (𝐺 “ {𝐶}) ⊆ 𝐴)
5146, 50eqsstrd 3623 . . . 4 ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) → 𝑆𝐴)
5239ad2antrl 763 . . . . . 6 ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) → 𝐺 Fn 𝐴)
53 dffn5 6199 . . . . . 6 (𝐺 Fn 𝐴𝐺 = (𝑦𝐴 ↦ (𝐺𝑦)))
5452, 53sylib 208 . . . . 5 ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) → 𝐺 = (𝑦𝐴 ↦ (𝐺𝑦)))
55 simplrr 800 . . . . . . . . . . 11 (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) → 𝑆 = (𝐺 “ {𝐶}))
5655eleq2d 2689 . . . . . . . . . 10 (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) → (𝑦𝑆𝑦 ∈ (𝐺 “ {𝐶})))
57 fniniseg 6295 . . . . . . . . . . . 12 (𝐺 Fn 𝐴 → (𝑦 ∈ (𝐺 “ {𝐶}) ↔ (𝑦𝐴 ∧ (𝐺𝑦) = 𝐶)))
5852, 57syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) → (𝑦 ∈ (𝐺 “ {𝐶}) ↔ (𝑦𝐴 ∧ (𝐺𝑦) = 𝐶)))
5958baibd 947 . . . . . . . . . 10 (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) → (𝑦 ∈ (𝐺 “ {𝐶}) ↔ (𝐺𝑦) = 𝐶))
6056, 59bitrd 268 . . . . . . . . 9 (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) → (𝑦𝑆 ↔ (𝐺𝑦) = 𝐶))
6160biimpa 501 . . . . . . . 8 ((((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) ∧ 𝑦𝑆) → (𝐺𝑦) = 𝐶)
62 iftrue 4069 . . . . . . . . 9 (𝑦𝑆 → if(𝑦𝑆, 𝐶, 𝐵) = 𝐶)
6362adantl 482 . . . . . . . 8 ((((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) ∧ 𝑦𝑆) → if(𝑦𝑆, 𝐶, 𝐵) = 𝐶)
6461, 63eqtr4d 2663 . . . . . . 7 ((((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) ∧ 𝑦𝑆) → (𝐺𝑦) = if(𝑦𝑆, 𝐶, 𝐵))
65 simprl 793 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) → 𝐺:𝐴⟶{𝐵, 𝐶})
6665ffvelrnda 6316 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) → (𝐺𝑦) ∈ {𝐵, 𝐶})
67 fvex 6160 . . . . . . . . . . . . . 14 (𝐺𝑦) ∈ V
6867elpr 4174 . . . . . . . . . . . . 13 ((𝐺𝑦) ∈ {𝐵, 𝐶} ↔ ((𝐺𝑦) = 𝐵 ∨ (𝐺𝑦) = 𝐶))
6966, 68sylib 208 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) → ((𝐺𝑦) = 𝐵 ∨ (𝐺𝑦) = 𝐶))
7069ord 392 . . . . . . . . . . 11 (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) → (¬ (𝐺𝑦) = 𝐵 → (𝐺𝑦) = 𝐶))
7170, 60sylibrd 249 . . . . . . . . . 10 (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) → (¬ (𝐺𝑦) = 𝐵𝑦𝑆))
7271con1d 139 . . . . . . . . 9 (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) → (¬ 𝑦𝑆 → (𝐺𝑦) = 𝐵))
7372imp 445 . . . . . . . 8 ((((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) ∧ ¬ 𝑦𝑆) → (𝐺𝑦) = 𝐵)
74 iffalse 4072 . . . . . . . . 9 𝑦𝑆 → if(𝑦𝑆, 𝐶, 𝐵) = 𝐵)
7574adantl 482 . . . . . . . 8 ((((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) ∧ ¬ 𝑦𝑆) → if(𝑦𝑆, 𝐶, 𝐵) = 𝐵)
7673, 75eqtr4d 2663 . . . . . . 7 ((((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) ∧ ¬ 𝑦𝑆) → (𝐺𝑦) = if(𝑦𝑆, 𝐶, 𝐵))
7764, 76pm2.61dan 831 . . . . . 6 (((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) ∧ 𝑦𝐴) → (𝐺𝑦) = if(𝑦𝑆, 𝐶, 𝐵))
7877mpteq2dva 4709 . . . . 5 ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) → (𝑦𝐴 ↦ (𝐺𝑦)) = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))
7954, 78eqtrd 2660 . . . 4 ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) → 𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))
8051, 79jca 554 . . 3 ((𝜑 ∧ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))) → (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵))))
8145, 80impbida 876 . 2 (𝜑 → ((𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵))) ↔ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))))
82 pw2f1o.1 . . . 4 (𝜑𝐴𝑉)
83 elpw2g 4792 . . . 4 (𝐴𝑉 → (𝑆 ∈ 𝒫 𝐴𝑆𝐴))
8482, 83syl 17 . . 3 (𝜑 → (𝑆 ∈ 𝒫 𝐴𝑆𝐴))
85 eleq1 2692 . . . . . . 7 (𝑧 = 𝑦 → (𝑧𝑆𝑦𝑆))
8685ifbid 4085 . . . . . 6 (𝑧 = 𝑦 → if(𝑧𝑆, 𝐶, 𝐵) = if(𝑦𝑆, 𝐶, 𝐵))
8786cbvmptv 4715 . . . . 5 (𝑧𝐴 ↦ if(𝑧𝑆, 𝐶, 𝐵)) = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵))
8887a1i 11 . . . 4 (𝜑 → (𝑧𝐴 ↦ if(𝑧𝑆, 𝐶, 𝐵)) = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))
8988eqeq2d 2636 . . 3 (𝜑 → (𝐺 = (𝑧𝐴 ↦ if(𝑧𝑆, 𝐶, 𝐵)) ↔ 𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵))))
9084, 89anbi12d 746 . 2 (𝜑 → ((𝑆 ∈ 𝒫 𝐴𝐺 = (𝑧𝐴 ↦ if(𝑧𝑆, 𝐶, 𝐵))) ↔ (𝑆𝐴𝐺 = (𝑦𝐴 ↦ if(𝑦𝑆, 𝐶, 𝐵)))))
91 prex 4875 . . . 4 {𝐵, 𝐶} ∈ V
92 elmapg 7816 . . . 4 (({𝐵, 𝐶} ∈ V ∧ 𝐴𝑉) → (𝐺 ∈ ({𝐵, 𝐶} ↑𝑚 𝐴) ↔ 𝐺:𝐴⟶{𝐵, 𝐶}))
9391, 82, 92sylancr 694 . . 3 (𝜑 → (𝐺 ∈ ({𝐵, 𝐶} ↑𝑚 𝐴) ↔ 𝐺:𝐴⟶{𝐵, 𝐶}))
9493anbi1d 740 . 2 (𝜑 → ((𝐺 ∈ ({𝐵, 𝐶} ↑𝑚 𝐴) ∧ 𝑆 = (𝐺 “ {𝐶})) ↔ (𝐺:𝐴⟶{𝐵, 𝐶} ∧ 𝑆 = (𝐺 “ {𝐶}))))
9581, 90, 943bitr4d 300 1 (𝜑 → ((𝑆 ∈ 𝒫 𝐴𝐺 = (𝑧𝐴 ↦ if(𝑧𝑆, 𝐶, 𝐵))) ↔ (𝐺 ∈ ({𝐵, 𝐶} ↑𝑚 𝐴) ∧ 𝑆 = (𝐺 “ {𝐶}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1480  wcel 1992  wne 2796  Vcvv 3191  wss 3560  ifcif 4063  𝒫 cpw 4135  {csn 4153  {cpr 4155  cmpt 4678  ccnv 5078  dom cdm 5079  cima 5082   Fn wfn 5845  wf 5846  cfv 5850  (class class class)co 6605  𝑚 cmap 7803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3193  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-fv 5858  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-map 7805
This theorem is referenced by:  pw2f1o  8010  sqff1o  24803
  Copyright terms: Public domain W3C validator