MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqff1o Structured version   Visualization version   GIF version

Theorem sqff1o 25759
Description: There is a bijection from the squarefree divisors of a number 𝑁 to the powerset of the prime divisors of 𝑁. Among other things, this implies that a number has 2↑𝑘 squarefree divisors where 𝑘 is the number of prime divisors, and a squarefree number has 2↑𝑘 divisors (because all divisors of a squarefree number are squarefree). The inverse function to 𝐹 takes the product of all the primes in some subset of prime divisors of 𝑁. (Contributed by Mario Carneiro, 1-Jul-2015.)
Hypotheses
Ref Expression
sqff1o.1 𝑆 = {𝑥 ∈ ℕ ∣ ((μ‘𝑥) ≠ 0 ∧ 𝑥𝑁)}
sqff1o.2 𝐹 = (𝑛𝑆 ↦ {𝑝 ∈ ℙ ∣ 𝑝𝑛})
sqff1o.3 𝐺 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)))
Assertion
Ref Expression
sqff1o (𝑁 ∈ ℕ → 𝐹:𝑆1-1-onto→𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})
Distinct variable groups:   𝑛,𝑝,𝑥,𝐺   𝑛,𝑁,𝑝,𝑥   𝑆,𝑛,𝑝
Allowed substitution hints:   𝑆(𝑥)   𝐹(𝑥,𝑛,𝑝)

Proof of Theorem sqff1o
Dummy variables 𝑘 𝑞 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sqff1o.2 . 2 𝐹 = (𝑛𝑆 ↦ {𝑝 ∈ ℙ ∣ 𝑝𝑛})
2 fveq2 6670 . . . . . . . . . . 11 (𝑥 = 𝑛 → (μ‘𝑥) = (μ‘𝑛))
32neeq1d 3075 . . . . . . . . . 10 (𝑥 = 𝑛 → ((μ‘𝑥) ≠ 0 ↔ (μ‘𝑛) ≠ 0))
4 breq1 5069 . . . . . . . . . 10 (𝑥 = 𝑛 → (𝑥𝑁𝑛𝑁))
53, 4anbi12d 632 . . . . . . . . 9 (𝑥 = 𝑛 → (((μ‘𝑥) ≠ 0 ∧ 𝑥𝑁) ↔ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)))
6 sqff1o.1 . . . . . . . . 9 𝑆 = {𝑥 ∈ ℕ ∣ ((μ‘𝑥) ≠ 0 ∧ 𝑥𝑁)}
75, 6elrab2 3683 . . . . . . . 8 (𝑛𝑆 ↔ (𝑛 ∈ ℕ ∧ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)))
87simprbi 499 . . . . . . 7 (𝑛𝑆 → ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁))
98simprd 498 . . . . . 6 (𝑛𝑆𝑛𝑁)
109ad2antlr 725 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → 𝑛𝑁)
11 prmz 16019 . . . . . . 7 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
1211adantl 484 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℤ)
13 simplr 767 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → 𝑛𝑆)
1413, 7sylib 220 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → (𝑛 ∈ ℕ ∧ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)))
1514simpld 497 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → 𝑛 ∈ ℕ)
1615nnzd 12087 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → 𝑛 ∈ ℤ)
17 nnz 12005 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
1817ad2antrr 724 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → 𝑁 ∈ ℤ)
19 dvdstr 15646 . . . . . 6 ((𝑝 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑝𝑛𝑛𝑁) → 𝑝𝑁))
2012, 16, 18, 19syl3anc 1367 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → ((𝑝𝑛𝑛𝑁) → 𝑝𝑁))
2110, 20mpan2d 692 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → (𝑝𝑛𝑝𝑁))
2221ss2rabdv 4052 . . 3 ((𝑁 ∈ ℕ ∧ 𝑛𝑆) → {𝑝 ∈ ℙ ∣ 𝑝𝑛} ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁})
23 prmex 16021 . . . . 5 ℙ ∈ V
2423rabex 5235 . . . 4 {𝑝 ∈ ℙ ∣ 𝑝𝑛} ∈ V
2524elpw 4543 . . 3 ({𝑝 ∈ ℙ ∣ 𝑝𝑛} ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ↔ {𝑝 ∈ ℙ ∣ 𝑝𝑛} ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁})
2622, 25sylibr 236 . 2 ((𝑁 ∈ ℕ ∧ 𝑛𝑆) → {𝑝 ∈ ℙ ∣ 𝑝𝑛} ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})
27 cnveq 5744 . . . . . . 7 (𝑦 = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) → 𝑦 = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))
2827imaeq1d 5928 . . . . . 6 (𝑦 = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) → (𝑦 “ ℕ) = ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ))
2928eleq1d 2897 . . . . 5 (𝑦 = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) → ((𝑦 “ ℕ) ∈ Fin ↔ ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ) ∈ Fin))
30 1nn0 11914 . . . . . . . . . 10 1 ∈ ℕ0
31 0nn0 11913 . . . . . . . . . 10 0 ∈ ℕ0
3230, 31ifcli 4513 . . . . . . . . 9 if(𝑘𝑧, 1, 0) ∈ ℕ0
3332rgenw 3150 . . . . . . . 8 𝑘 ∈ ℙ if(𝑘𝑧, 1, 0) ∈ ℕ0
34 eqid 2821 . . . . . . . . 9 (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))
3534fmpt 6874 . . . . . . . 8 (∀𝑘 ∈ ℙ if(𝑘𝑧, 1, 0) ∈ ℕ0 ↔ (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)):ℙ⟶ℕ0)
3633, 35mpbi 232 . . . . . . 7 (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)):ℙ⟶ℕ0
3736a1i 11 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)):ℙ⟶ℕ0)
38 nn0ex 11904 . . . . . . 7 0 ∈ V
3938, 23elmap 8435 . . . . . 6 ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ∈ (ℕ0m ℙ) ↔ (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)):ℙ⟶ℕ0)
4037, 39sylibr 236 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ∈ (ℕ0m ℙ))
41 fzfi 13341 . . . . . 6 (1...𝑁) ∈ Fin
42 ffn 6514 . . . . . . . . . . 11 ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)):ℙ⟶ℕ0 → (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) Fn ℙ)
43 elpreima 6828 . . . . . . . . . . 11 ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) Fn ℙ → (𝑥 ∈ ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ) ↔ (𝑥 ∈ ℙ ∧ ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))‘𝑥) ∈ ℕ)))
4436, 42, 43mp2b 10 . . . . . . . . . 10 (𝑥 ∈ ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ) ↔ (𝑥 ∈ ℙ ∧ ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))‘𝑥) ∈ ℕ))
45 elequ1 2121 . . . . . . . . . . . . . 14 (𝑘 = 𝑥 → (𝑘𝑧𝑥𝑧))
4645ifbid 4489 . . . . . . . . . . . . 13 (𝑘 = 𝑥 → if(𝑘𝑧, 1, 0) = if(𝑥𝑧, 1, 0))
4730, 31ifcli 4513 . . . . . . . . . . . . . 14 if(𝑥𝑧, 1, 0) ∈ ℕ0
4847elexi 3513 . . . . . . . . . . . . 13 if(𝑥𝑧, 1, 0) ∈ V
4946, 34, 48fvmpt 6768 . . . . . . . . . . . 12 (𝑥 ∈ ℙ → ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))‘𝑥) = if(𝑥𝑧, 1, 0))
5049eleq1d 2897 . . . . . . . . . . 11 (𝑥 ∈ ℙ → (((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))‘𝑥) ∈ ℕ ↔ if(𝑥𝑧, 1, 0) ∈ ℕ))
5150biimpa 479 . . . . . . . . . 10 ((𝑥 ∈ ℙ ∧ ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))‘𝑥) ∈ ℕ) → if(𝑥𝑧, 1, 0) ∈ ℕ)
5244, 51sylbi 219 . . . . . . . . 9 (𝑥 ∈ ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ) → if(𝑥𝑧, 1, 0) ∈ ℕ)
53 0nnn 11674 . . . . . . . . . . 11 ¬ 0 ∈ ℕ
54 iffalse 4476 . . . . . . . . . . . 12 𝑥𝑧 → if(𝑥𝑧, 1, 0) = 0)
5554eleq1d 2897 . . . . . . . . . . 11 𝑥𝑧 → (if(𝑥𝑧, 1, 0) ∈ ℕ ↔ 0 ∈ ℕ))
5653, 55mtbiri 329 . . . . . . . . . 10 𝑥𝑧 → ¬ if(𝑥𝑧, 1, 0) ∈ ℕ)
5756con4i 114 . . . . . . . . 9 (if(𝑥𝑧, 1, 0) ∈ ℕ → 𝑥𝑧)
5852, 57syl 17 . . . . . . . 8 (𝑥 ∈ ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ) → 𝑥𝑧)
5958ssriv 3971 . . . . . . 7 ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ) ⊆ 𝑧
60 elpwi 4548 . . . . . . . . 9 (𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} → 𝑧 ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁})
6160adantl 484 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → 𝑧 ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁})
62 prmssnn 16020 . . . . . . . . . 10 ℙ ⊆ ℕ
63 rabss2 4054 . . . . . . . . . 10 (ℙ ⊆ ℕ → {𝑝 ∈ ℙ ∣ 𝑝𝑁} ⊆ {𝑝 ∈ ℕ ∣ 𝑝𝑁})
6462, 63ax-mp 5 . . . . . . . . 9 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ⊆ {𝑝 ∈ ℕ ∣ 𝑝𝑁}
65 dvdsssfz1 15668 . . . . . . . . . 10 (𝑁 ∈ ℕ → {𝑝 ∈ ℕ ∣ 𝑝𝑁} ⊆ (1...𝑁))
6665adantr 483 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → {𝑝 ∈ ℕ ∣ 𝑝𝑁} ⊆ (1...𝑁))
6764, 66sstrid 3978 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → {𝑝 ∈ ℙ ∣ 𝑝𝑁} ⊆ (1...𝑁))
6861, 67sstrd 3977 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → 𝑧 ⊆ (1...𝑁))
6959, 68sstrid 3978 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ) ⊆ (1...𝑁))
70 ssfi 8738 . . . . . 6 (((1...𝑁) ∈ Fin ∧ ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ) ⊆ (1...𝑁)) → ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ) ∈ Fin)
7141, 69, 70sylancr 589 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) “ ℕ) ∈ Fin)
7229, 40, 71elrabd 3682 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ∈ {𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin})
73 sqff1o.3 . . . . . . 7 𝐺 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)))
74 eqid 2821 . . . . . . 7 {𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin} = {𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin}
7573, 741arith 16263 . . . . . 6 𝐺:ℕ–1-1-onto→{𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin}
76 f1ocnv 6627 . . . . . 6 (𝐺:ℕ–1-1-onto→{𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin} → 𝐺:{𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin}–1-1-onto→ℕ)
77 f1of 6615 . . . . . 6 (𝐺:{𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin}–1-1-onto→ℕ → 𝐺:{𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin}⟶ℕ)
7875, 76, 77mp2b 10 . . . . 5 𝐺:{𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin}⟶ℕ
7978ffvelrni 6850 . . . 4 ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ∈ {𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin} → (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∈ ℕ)
8072, 79syl 17 . . 3 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∈ ℕ)
81 f1ocnvfv2 7034 . . . . . . . . . . . 12 ((𝐺:ℕ–1-1-onto→{𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin} ∧ (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ∈ {𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin}) → (𝐺‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))
8275, 72, 81sylancr 589 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝐺‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))
83731arithlem1 16259 . . . . . . . . . . . 12 ((𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∈ ℕ → (𝐺‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))))))
8480, 83syl 17 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝐺‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))))))
8582, 84eqtr3d 2858 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))))))
8685fveq1d 6672 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))‘𝑞) = ((𝑝 ∈ ℙ ↦ (𝑝 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))‘𝑞))
87 elequ1 2121 . . . . . . . . . . 11 (𝑘 = 𝑞 → (𝑘𝑧𝑞𝑧))
8887ifbid 4489 . . . . . . . . . 10 (𝑘 = 𝑞 → if(𝑘𝑧, 1, 0) = if(𝑞𝑧, 1, 0))
8930, 31ifcli 4513 . . . . . . . . . . 11 if(𝑞𝑧, 1, 0) ∈ ℕ0
9089elexi 3513 . . . . . . . . . 10 if(𝑞𝑧, 1, 0) ∈ V
9188, 34, 90fvmpt 6768 . . . . . . . . 9 (𝑞 ∈ ℙ → ((𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))‘𝑞) = if(𝑞𝑧, 1, 0))
9286, 91sylan9req 2877 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → ((𝑝 ∈ ℙ ↦ (𝑝 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))‘𝑞) = if(𝑞𝑧, 1, 0))
93 oveq1 7163 . . . . . . . . . 10 (𝑝 = 𝑞 → (𝑝 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) = (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))
94 eqid 2821 . . . . . . . . . 10 (𝑝 ∈ ℙ ↦ (𝑝 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))))) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))
95 ovex 7189 . . . . . . . . . 10 (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ∈ V
9693, 94, 95fvmpt 6768 . . . . . . . . 9 (𝑞 ∈ ℙ → ((𝑝 ∈ ℙ ↦ (𝑝 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))‘𝑞) = (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))
9796adantl 484 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → ((𝑝 ∈ ℙ ↦ (𝑝 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))‘𝑞) = (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))
9892, 97eqtr3d 2858 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → if(𝑞𝑧, 1, 0) = (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))
99 breq1 5069 . . . . . . . 8 (1 = if(𝑞𝑧, 1, 0) → (1 ≤ 1 ↔ if(𝑞𝑧, 1, 0) ≤ 1))
100 breq1 5069 . . . . . . . 8 (0 = if(𝑞𝑧, 1, 0) → (0 ≤ 1 ↔ if(𝑞𝑧, 1, 0) ≤ 1))
101 1le1 11268 . . . . . . . 8 1 ≤ 1
102 0le1 11163 . . . . . . . 8 0 ≤ 1
10399, 100, 101, 102keephyp 4536 . . . . . . 7 if(𝑞𝑧, 1, 0) ≤ 1
10498, 103eqbrtrrdi 5106 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≤ 1)
105104ralrimiva 3182 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ∀𝑞 ∈ ℙ (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≤ 1)
106 issqf 25713 . . . . . 6 ((𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∈ ℕ → ((μ‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≠ 0 ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≤ 1))
10780, 106syl 17 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ((μ‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≠ 0 ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≤ 1))
108105, 107mpbird 259 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (μ‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≠ 0)
109 iftrue 4473 . . . . . . . . . . . 12 (𝑞𝑧 → if(𝑞𝑧, 1, 0) = 1)
110109adantl 484 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞𝑧) → if(𝑞𝑧, 1, 0) = 1)
11161sselda 3967 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞𝑧) → 𝑞 ∈ {𝑝 ∈ ℙ ∣ 𝑝𝑁})
112 breq1 5069 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑞 → (𝑝𝑁𝑞𝑁))
113112elrab 3680 . . . . . . . . . . . . . . 15 (𝑞 ∈ {𝑝 ∈ ℙ ∣ 𝑝𝑁} ↔ (𝑞 ∈ ℙ ∧ 𝑞𝑁))
114111, 113sylib 220 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞𝑧) → (𝑞 ∈ ℙ ∧ 𝑞𝑁))
115114simprd 498 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞𝑧) → 𝑞𝑁)
116114simpld 497 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞𝑧) → 𝑞 ∈ ℙ)
117 simpll 765 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞𝑧) → 𝑁 ∈ ℕ)
118 pcelnn 16206 . . . . . . . . . . . . . 14 ((𝑞 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑞 pCnt 𝑁) ∈ ℕ ↔ 𝑞𝑁))
119116, 117, 118syl2anc 586 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞𝑧) → ((𝑞 pCnt 𝑁) ∈ ℕ ↔ 𝑞𝑁))
120115, 119mpbird 259 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞𝑧) → (𝑞 pCnt 𝑁) ∈ ℕ)
121120nnge1d 11686 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞𝑧) → 1 ≤ (𝑞 pCnt 𝑁))
122110, 121eqbrtrd 5088 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞𝑧) → if(𝑞𝑧, 1, 0) ≤ (𝑞 pCnt 𝑁))
123122ex 415 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝑞𝑧 → if(𝑞𝑧, 1, 0) ≤ (𝑞 pCnt 𝑁)))
124123adantr 483 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → (𝑞𝑧 → if(𝑞𝑧, 1, 0) ≤ (𝑞 pCnt 𝑁)))
125 simpr 487 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → 𝑞 ∈ ℙ)
12617ad2antrr 724 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → 𝑁 ∈ ℤ)
127 pcge0 16198 . . . . . . . . . 10 ((𝑞 ∈ ℙ ∧ 𝑁 ∈ ℤ) → 0 ≤ (𝑞 pCnt 𝑁))
128125, 126, 127syl2anc 586 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → 0 ≤ (𝑞 pCnt 𝑁))
129 iffalse 4476 . . . . . . . . . 10 𝑞𝑧 → if(𝑞𝑧, 1, 0) = 0)
130129breq1d 5076 . . . . . . . . 9 𝑞𝑧 → (if(𝑞𝑧, 1, 0) ≤ (𝑞 pCnt 𝑁) ↔ 0 ≤ (𝑞 pCnt 𝑁)))
131128, 130syl5ibrcom 249 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → (¬ 𝑞𝑧 → if(𝑞𝑧, 1, 0) ≤ (𝑞 pCnt 𝑁)))
132124, 131pm2.61d 181 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → if(𝑞𝑧, 1, 0) ≤ (𝑞 pCnt 𝑁))
13398, 132eqbrtrrd 5090 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∧ 𝑞 ∈ ℙ) → (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≤ (𝑞 pCnt 𝑁))
134133ralrimiva 3182 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ∀𝑞 ∈ ℙ (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≤ (𝑞 pCnt 𝑁))
13580nnzd 12087 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∈ ℤ)
13617adantr 483 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → 𝑁 ∈ ℤ)
137 pc2dvds 16215 . . . . . 6 (((𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∥ 𝑁 ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≤ (𝑞 pCnt 𝑁)))
138135, 136, 137syl2anc 586 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ((𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∥ 𝑁 ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≤ (𝑞 pCnt 𝑁)))
139134, 138mpbird 259 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∥ 𝑁)
140108, 139jca 514 . . 3 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ((μ‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≠ 0 ∧ (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∥ 𝑁))
141 fveq2 6670 . . . . . 6 (𝑥 = (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) → (μ‘𝑥) = (μ‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))
142141neeq1d 3075 . . . . 5 (𝑥 = (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) → ((μ‘𝑥) ≠ 0 ↔ (μ‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≠ 0))
143 breq1 5069 . . . . 5 (𝑥 = (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) → (𝑥𝑁 ↔ (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∥ 𝑁))
144142, 143anbi12d 632 . . . 4 (𝑥 = (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) → (((μ‘𝑥) ≠ 0 ∧ 𝑥𝑁) ↔ ((μ‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≠ 0 ∧ (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∥ 𝑁)))
145144, 6elrab2 3683 . . 3 ((𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∈ 𝑆 ↔ ((𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∈ ℕ ∧ ((μ‘(𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))) ≠ 0 ∧ (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∥ 𝑁)))
14680, 140, 145sylanbrc 585 . 2 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ∈ 𝑆)
147 eqcom 2828 . . 3 (𝑛 = (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ↔ (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) = 𝑛)
1487simplbi 500 . . . . . . 7 (𝑛𝑆𝑛 ∈ ℕ)
149148ad2antrl 726 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → 𝑛 ∈ ℕ)
15023mptex 6986 . . . . . 6 (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) ∈ V
15173fvmpt2 6779 . . . . . 6 ((𝑛 ∈ ℕ ∧ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) ∈ V) → (𝐺𝑛) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)))
152149, 150, 151sylancl 588 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → (𝐺𝑛) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)))
153152eqeq1d 2823 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → ((𝐺𝑛) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ↔ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))))
15475a1i 11 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → 𝐺:ℕ–1-1-onto→{𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin})
15572adantrl 714 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ∈ {𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin})
156 f1ocnvfvb 7036 . . . . 5 ((𝐺:ℕ–1-1-onto→{𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin} ∧ 𝑛 ∈ ℕ ∧ (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ∈ {𝑦 ∈ (ℕ0m ℙ) ∣ (𝑦 “ ℕ) ∈ Fin}) → ((𝐺𝑛) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ↔ (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) = 𝑛))
157154, 149, 155, 156syl3anc 1367 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → ((𝐺𝑛) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ↔ (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) = 𝑛))
15823a1i 11 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → ℙ ∈ V)
159 0cnd 10634 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → 0 ∈ ℂ)
160 1cnd 10636 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → 1 ∈ ℂ)
161 0ne1 11709 . . . . . . . 8 0 ≠ 1
162161a1i 11 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → 0 ≠ 1)
163158, 159, 160, 162pw2f1olem 8621 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → ((𝑧 ∈ 𝒫 ℙ ∧ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ↔ ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) ∈ ({0, 1} ↑m ℙ) ∧ 𝑧 = ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) “ {1}))))
164 ssrab2 4056 . . . . . . . . 9 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ⊆ ℙ
165164sspwi 4553 . . . . . . . 8 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ⊆ 𝒫 ℙ
166 simprr 771 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → 𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})
167165, 166sseldi 3965 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → 𝑧 ∈ 𝒫 ℙ)
168167biantrurd 535 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ↔ (𝑧 ∈ 𝒫 ℙ ∧ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)))))
169 id 22 . . . . . . . . . . . . . . 15 (𝑝 ∈ ℙ → 𝑝 ∈ ℙ)
170148adantl 484 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑛𝑆) → 𝑛 ∈ ℕ)
171 pccl 16186 . . . . . . . . . . . . . . 15 ((𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ) → (𝑝 pCnt 𝑛) ∈ ℕ0)
172169, 170, 171syl2anr 598 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝑛) ∈ ℕ0)
173 elnn0 11900 . . . . . . . . . . . . . 14 ((𝑝 pCnt 𝑛) ∈ ℕ0 ↔ ((𝑝 pCnt 𝑛) ∈ ℕ ∨ (𝑝 pCnt 𝑛) = 0))
174172, 173sylib 220 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝑛) ∈ ℕ ∨ (𝑝 pCnt 𝑛) = 0))
175174orcomd 867 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝑛) = 0 ∨ (𝑝 pCnt 𝑛) ∈ ℕ))
1768simpld 497 . . . . . . . . . . . . . . . . 17 (𝑛𝑆 → (μ‘𝑛) ≠ 0)
177176adantl 484 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑛𝑆) → (μ‘𝑛) ≠ 0)
178 issqf 25713 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → ((μ‘𝑛) ≠ 0 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑛) ≤ 1))
179170, 178syl 17 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑛𝑆) → ((μ‘𝑛) ≠ 0 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑛) ≤ 1))
180177, 179mpbid 234 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑛𝑆) → ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑛) ≤ 1)
181180r19.21bi 3208 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝑛) ≤ 1)
182 nnle1eq1 11668 . . . . . . . . . . . . . 14 ((𝑝 pCnt 𝑛) ∈ ℕ → ((𝑝 pCnt 𝑛) ≤ 1 ↔ (𝑝 pCnt 𝑛) = 1))
183181, 182syl5ibcom 247 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝑛) ∈ ℕ → (𝑝 pCnt 𝑛) = 1))
184183orim2d 963 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝑛) = 0 ∨ (𝑝 pCnt 𝑛) ∈ ℕ) → ((𝑝 pCnt 𝑛) = 0 ∨ (𝑝 pCnt 𝑛) = 1)))
185175, 184mpd 15 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝑛) = 0 ∨ (𝑝 pCnt 𝑛) = 1))
186 ovex 7189 . . . . . . . . . . . 12 (𝑝 pCnt 𝑛) ∈ V
187186elpr 4590 . . . . . . . . . . 11 ((𝑝 pCnt 𝑛) ∈ {0, 1} ↔ ((𝑝 pCnt 𝑛) = 0 ∨ (𝑝 pCnt 𝑛) = 1))
188185, 187sylibr 236 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝑛) ∈ {0, 1})
189188fmpttd 6879 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛𝑆) → (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)):ℙ⟶{0, 1})
190189adantrr 715 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)):ℙ⟶{0, 1})
191 prex 5333 . . . . . . . . 9 {0, 1} ∈ V
192191, 23elmap 8435 . . . . . . . 8 ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) ∈ ({0, 1} ↑m ℙ) ↔ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)):ℙ⟶{0, 1})
193190, 192sylibr 236 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) ∈ ({0, 1} ↑m ℙ))
194193biantrurd 535 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → (𝑧 = ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) “ {1}) ↔ ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) ∈ ({0, 1} ↑m ℙ) ∧ 𝑧 = ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) “ {1}))))
195163, 168, 1943bitr4d 313 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ↔ 𝑧 = ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) “ {1})))
196 eqid 2821 . . . . . . . . 9 (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛))
197196mptiniseg 6093 . . . . . . . 8 (1 ∈ ℕ0 → ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) “ {1}) = {𝑝 ∈ ℙ ∣ (𝑝 pCnt 𝑛) = 1})
19830, 197ax-mp 5 . . . . . . 7 ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) “ {1}) = {𝑝 ∈ ℙ ∣ (𝑝 pCnt 𝑛) = 1}
199 id 22 . . . . . . . . . . . 12 ((𝑝 pCnt 𝑛) = 1 → (𝑝 pCnt 𝑛) = 1)
200 1nn 11649 . . . . . . . . . . . 12 1 ∈ ℕ
201199, 200eqeltrdi 2921 . . . . . . . . . . 11 ((𝑝 pCnt 𝑛) = 1 → (𝑝 pCnt 𝑛) ∈ ℕ)
202201, 183impbid2 228 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝑛) = 1 ↔ (𝑝 pCnt 𝑛) ∈ ℕ))
203 simpr 487 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
204 pcelnn 16206 . . . . . . . . . . 11 ((𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ) → ((𝑝 pCnt 𝑛) ∈ ℕ ↔ 𝑝𝑛))
205203, 15, 204syl2anc 586 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝑛) ∈ ℕ ↔ 𝑝𝑛))
206202, 205bitrd 281 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑛𝑆) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝑛) = 1 ↔ 𝑝𝑛))
207206rabbidva 3478 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛𝑆) → {𝑝 ∈ ℙ ∣ (𝑝 pCnt 𝑛) = 1} = {𝑝 ∈ ℙ ∣ 𝑝𝑛})
208207adantrr 715 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → {𝑝 ∈ ℙ ∣ (𝑝 pCnt 𝑛) = 1} = {𝑝 ∈ ℙ ∣ 𝑝𝑛})
209198, 208syl5eq 2868 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) “ {1}) = {𝑝 ∈ ℙ ∣ 𝑝𝑛})
210209eqeq2d 2832 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → (𝑧 = ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) “ {1}) ↔ 𝑧 = {𝑝 ∈ ℙ ∣ 𝑝𝑛}))
211195, 210bitrd 281 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) = (𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0)) ↔ 𝑧 = {𝑝 ∈ ℙ ∣ 𝑝𝑛}))
212153, 157, 2113bitr3d 311 . . 3 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → ((𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) = 𝑛𝑧 = {𝑝 ∈ ℙ ∣ 𝑝𝑛}))
213147, 212syl5bb 285 . 2 ((𝑁 ∈ ℕ ∧ (𝑛𝑆𝑧 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})) → (𝑛 = (𝐺‘(𝑘 ∈ ℙ ↦ if(𝑘𝑧, 1, 0))) ↔ 𝑧 = {𝑝 ∈ ℙ ∣ 𝑝𝑛}))
2141, 26, 146, 213f1o2d 7399 1 (𝑁 ∈ ℕ → 𝐹:𝑆1-1-onto→𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  wne 3016  wral 3138  {crab 3142  Vcvv 3494  wss 3936  ifcif 4467  𝒫 cpw 4539  {csn 4567  {cpr 4569   class class class wbr 5066  cmpt 5146  ccnv 5554  cima 5558   Fn wfn 6350  wf 6351  1-1-ontowf1o 6354  cfv 6355  (class class class)co 7156  m cmap 8406  Fincfn 8509  cc 10535  0cc0 10537  1c1 10538  cle 10676  cn 11638  0cn0 11898  cz 11982  ...cfz 12893  cdvds 15607  cprime 16015   pCnt cpc 16173  μcmu 25672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-q 12350  df-rp 12391  df-fz 12894  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-dvds 15608  df-gcd 15844  df-prm 16016  df-pc 16174  df-mu 25678
This theorem is referenced by:  musum  25768
  Copyright terms: Public domain W3C validator