MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qdenval Structured version   Visualization version   GIF version

Theorem qdenval 16078
Description: Value of the canonical denominator function. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
qdenval (𝐴 ∈ ℚ → (denom‘𝐴) = (2nd ‘(𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))))))
Distinct variable group:   𝑥,𝐴

Proof of Theorem qdenval
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2825 . . . . 5 (𝑎 = 𝐴 → (𝑎 = ((1st𝑥) / (2nd𝑥)) ↔ 𝐴 = ((1st𝑥) / (2nd𝑥))))
21anbi2d 630 . . . 4 (𝑎 = 𝐴 → ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝑎 = ((1st𝑥) / (2nd𝑥))) ↔ (((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥)))))
32riotabidv 7116 . . 3 (𝑎 = 𝐴 → (𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝑎 = ((1st𝑥) / (2nd𝑥)))) = (𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥)))))
43fveq2d 6674 . 2 (𝑎 = 𝐴 → (2nd ‘(𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝑎 = ((1st𝑥) / (2nd𝑥))))) = (2nd ‘(𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))))))
5 df-denom 16076 . 2 denom = (𝑎 ∈ ℚ ↦ (2nd ‘(𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝑎 = ((1st𝑥) / (2nd𝑥))))))
6 fvex 6683 . 2 (2nd ‘(𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))))) ∈ V
74, 5, 6fvmpt 6768 1 (𝐴 ∈ ℚ → (denom‘𝐴) = (2nd ‘(𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114   × cxp 5553  cfv 6355  crio 7113  (class class class)co 7156  1st c1st 7687  2nd c2nd 7688  1c1 10538   / cdiv 11297  cn 11638  cz 11982  cq 12349   gcd cgcd 15843  denomcdenom 16074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-iota 6314  df-fun 6357  df-fv 6363  df-riota 7114  df-denom 16076
This theorem is referenced by:  qnumdencl  16079  fden  16083  qnumdenbi  16084
  Copyright terms: Public domain W3C validator