Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reupr Structured version   Visualization version   GIF version

Theorem reupr 43733
Description: There is a unique unordered pair fulfilling a wff iff there are uniquely two sets fulfilling a corresponding wff. (Contributed by AV, 7-Apr-2023.)
Hypotheses
Ref Expression
reupr.a (𝑝 = {𝑎, 𝑏} → (𝜓𝜒))
reupr.x (𝑝 = {𝑥, 𝑦} → (𝜓𝜃))
Assertion
Ref Expression
reupr (𝑋𝑉 → (∃!𝑝 ∈ (Pairs‘𝑋)𝜓 ↔ ∃𝑎𝑋𝑏𝑋 (𝜒 ∧ ∀𝑥𝑋𝑦𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))))
Distinct variable groups:   𝑉,𝑎,𝑏,𝑝,𝑥,𝑦   𝑋,𝑎,𝑏,𝑝,𝑥,𝑦   𝜓,𝑎,𝑏,𝑥,𝑦   𝜃,𝑝   𝜒,𝑝
Allowed substitution hints:   𝜓(𝑝)   𝜒(𝑥,𝑦,𝑎,𝑏)   𝜃(𝑥,𝑦,𝑎,𝑏)

Proof of Theorem reupr
Dummy variables 𝑐 𝑑 𝑞 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfsbc1v 3792 . . 3 𝑝[𝑞 / 𝑝]𝜓
2 nfsbc1v 3792 . . 3 𝑝[𝑤 / 𝑝]𝜓
3 sbceq1a 3783 . . 3 (𝑝 = 𝑤 → (𝜓[𝑤 / 𝑝]𝜓))
4 dfsbcq 3774 . . 3 (𝑤 = 𝑞 → ([𝑤 / 𝑝]𝜓[𝑞 / 𝑝]𝜓))
51, 2, 3, 4reu8nf 3860 . 2 (∃!𝑝 ∈ (Pairs‘𝑋)𝜓 ↔ ∃𝑝 ∈ (Pairs‘𝑋)(𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓𝑝 = 𝑞)))
6 sprel 43695 . . . . . 6 (𝑝 ∈ (Pairs‘𝑋) → ∃𝑎𝑋𝑏𝑋 𝑝 = {𝑎, 𝑏})
7 reupr.a . . . . . . . . . . . . . . 15 (𝑝 = {𝑎, 𝑏} → (𝜓𝜒))
87biimpcd 251 . . . . . . . . . . . . . 14 (𝜓 → (𝑝 = {𝑎, 𝑏} → 𝜒))
98adantr 483 . . . . . . . . . . . . 13 ((𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓𝑝 = 𝑞)) → (𝑝 = {𝑎, 𝑏} → 𝜒))
109ad2antlr 725 . . . . . . . . . . . 12 (((𝑋𝑉 ∧ (𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓𝑝 = 𝑞))) ∧ (𝑎𝑋𝑏𝑋)) → (𝑝 = {𝑎, 𝑏} → 𝜒))
1110imp 409 . . . . . . . . . . 11 ((((𝑋𝑉 ∧ (𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓𝑝 = 𝑞))) ∧ (𝑎𝑋𝑏𝑋)) ∧ 𝑝 = {𝑎, 𝑏}) → 𝜒)
12 pm3.22 462 . . . . . . . . . . . . . . . . . . 19 (((𝑥𝑋𝑦𝑋) ∧ 𝑋𝑉) → (𝑋𝑉 ∧ (𝑥𝑋𝑦𝑋)))
1312adantr 483 . . . . . . . . . . . . . . . . . 18 ((((𝑥𝑋𝑦𝑋) ∧ 𝑋𝑉) ∧ 𝜓) → (𝑋𝑉 ∧ (𝑥𝑋𝑦𝑋)))
14 prelspr 43697 . . . . . . . . . . . . . . . . . . 19 ((𝑋𝑉 ∧ (𝑥𝑋𝑦𝑋)) → {𝑥, 𝑦} ∈ (Pairs‘𝑋))
15 dfsbcq 3774 . . . . . . . . . . . . . . . . . . . . 21 (𝑞 = {𝑥, 𝑦} → ([𝑞 / 𝑝]𝜓[{𝑥, 𝑦} / 𝑝]𝜓))
16 eqeq2 2833 . . . . . . . . . . . . . . . . . . . . 21 (𝑞 = {𝑥, 𝑦} → (𝑝 = 𝑞𝑝 = {𝑥, 𝑦}))
1715, 16imbi12d 347 . . . . . . . . . . . . . . . . . . . 20 (𝑞 = {𝑥, 𝑦} → (([𝑞 / 𝑝]𝜓𝑝 = 𝑞) ↔ ([{𝑥, 𝑦} / 𝑝]𝜓𝑝 = {𝑥, 𝑦})))
1817adantl 484 . . . . . . . . . . . . . . . . . . 19 (((𝑋𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑞 = {𝑥, 𝑦}) → (([𝑞 / 𝑝]𝜓𝑝 = 𝑞) ↔ ([{𝑥, 𝑦} / 𝑝]𝜓𝑝 = {𝑥, 𝑦})))
1914, 18rspcdv 3615 . . . . . . . . . . . . . . . . . 18 ((𝑋𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓𝑝 = 𝑞) → ([{𝑥, 𝑦} / 𝑝]𝜓𝑝 = {𝑥, 𝑦})))
2013, 19syl 17 . . . . . . . . . . . . . . . . 17 ((((𝑥𝑋𝑦𝑋) ∧ 𝑋𝑉) ∧ 𝜓) → (∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓𝑝 = 𝑞) → ([{𝑥, 𝑦} / 𝑝]𝜓𝑝 = {𝑥, 𝑦})))
21 zfpair2 5331 . . . . . . . . . . . . . . . . . . . . . . 23 {𝑥, 𝑦} ∈ V
22 reupr.x . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 = {𝑥, 𝑦} → (𝜓𝜃))
2321, 22sbcie 3812 . . . . . . . . . . . . . . . . . . . . . 22 ([{𝑥, 𝑦} / 𝑝]𝜓𝜃)
24 pm2.27 42 . . . . . . . . . . . . . . . . . . . . . 22 ([{𝑥, 𝑦} / 𝑝]𝜓 → (([{𝑥, 𝑦} / 𝑝]𝜓𝑝 = {𝑥, 𝑦}) → 𝑝 = {𝑥, 𝑦}))
2523, 24sylbir 237 . . . . . . . . . . . . . . . . . . . . 21 (𝜃 → (([{𝑥, 𝑦} / 𝑝]𝜓𝑝 = {𝑥, 𝑦}) → 𝑝 = {𝑥, 𝑦}))
26 eqcom 2828 . . . . . . . . . . . . . . . . . . . . 21 ({𝑥, 𝑦} = 𝑝𝑝 = {𝑥, 𝑦})
2725, 26syl6ibr 254 . . . . . . . . . . . . . . . . . . . 20 (𝜃 → (([{𝑥, 𝑦} / 𝑝]𝜓𝑝 = {𝑥, 𝑦}) → {𝑥, 𝑦} = 𝑝))
2827com12 32 . . . . . . . . . . . . . . . . . . 19 (([{𝑥, 𝑦} / 𝑝]𝜓𝑝 = {𝑥, 𝑦}) → (𝜃 → {𝑥, 𝑦} = 𝑝))
29 eqeq2 2833 . . . . . . . . . . . . . . . . . . . . 21 ({𝑎, 𝑏} = 𝑝 → ({𝑥, 𝑦} = {𝑎, 𝑏} ↔ {𝑥, 𝑦} = 𝑝))
3029eqcoms 2829 . . . . . . . . . . . . . . . . . . . 20 (𝑝 = {𝑎, 𝑏} → ({𝑥, 𝑦} = {𝑎, 𝑏} ↔ {𝑥, 𝑦} = 𝑝))
3130imbi2d 343 . . . . . . . . . . . . . . . . . . 19 (𝑝 = {𝑎, 𝑏} → ((𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}) ↔ (𝜃 → {𝑥, 𝑦} = 𝑝)))
3228, 31syl5ibrcom 249 . . . . . . . . . . . . . . . . . 18 (([{𝑥, 𝑦} / 𝑝]𝜓𝑝 = {𝑥, 𝑦}) → (𝑝 = {𝑎, 𝑏} → (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏})))
3332a1d 25 . . . . . . . . . . . . . . . . 17 (([{𝑥, 𝑦} / 𝑝]𝜓𝑝 = {𝑥, 𝑦}) → ((𝑎𝑋𝑏𝑋) → (𝑝 = {𝑎, 𝑏} → (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))))
3420, 33syl6 35 . . . . . . . . . . . . . . . 16 ((((𝑥𝑋𝑦𝑋) ∧ 𝑋𝑉) ∧ 𝜓) → (∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓𝑝 = 𝑞) → ((𝑎𝑋𝑏𝑋) → (𝑝 = {𝑎, 𝑏} → (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏})))))
3534expimpd 456 . . . . . . . . . . . . . . 15 (((𝑥𝑋𝑦𝑋) ∧ 𝑋𝑉) → ((𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓𝑝 = 𝑞)) → ((𝑎𝑋𝑏𝑋) → (𝑝 = {𝑎, 𝑏} → (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏})))))
3635expimpd 456 . . . . . . . . . . . . . 14 ((𝑥𝑋𝑦𝑋) → ((𝑋𝑉 ∧ (𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓𝑝 = 𝑞))) → ((𝑎𝑋𝑏𝑋) → (𝑝 = {𝑎, 𝑏} → (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏})))))
3736imp4c 426 . . . . . . . . . . . . 13 ((𝑥𝑋𝑦𝑋) → ((((𝑋𝑉 ∧ (𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓𝑝 = 𝑞))) ∧ (𝑎𝑋𝑏𝑋)) ∧ 𝑝 = {𝑎, 𝑏}) → (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏})))
3837impcom 410 . . . . . . . . . . . 12 (((((𝑋𝑉 ∧ (𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓𝑝 = 𝑞))) ∧ (𝑎𝑋𝑏𝑋)) ∧ 𝑝 = {𝑎, 𝑏}) ∧ (𝑥𝑋𝑦𝑋)) → (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))
3938ralrimivva 3191 . . . . . . . . . . 11 ((((𝑋𝑉 ∧ (𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓𝑝 = 𝑞))) ∧ (𝑎𝑋𝑏𝑋)) ∧ 𝑝 = {𝑎, 𝑏}) → ∀𝑥𝑋𝑦𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))
4011, 39jca 514 . . . . . . . . . 10 ((((𝑋𝑉 ∧ (𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓𝑝 = 𝑞))) ∧ (𝑎𝑋𝑏𝑋)) ∧ 𝑝 = {𝑎, 𝑏}) → (𝜒 ∧ ∀𝑥𝑋𝑦𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏})))
4140ex 415 . . . . . . . . 9 (((𝑋𝑉 ∧ (𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓𝑝 = 𝑞))) ∧ (𝑎𝑋𝑏𝑋)) → (𝑝 = {𝑎, 𝑏} → (𝜒 ∧ ∀𝑥𝑋𝑦𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))))
4241reximdvva 3277 . . . . . . . 8 ((𝑋𝑉 ∧ (𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓𝑝 = 𝑞))) → (∃𝑎𝑋𝑏𝑋 𝑝 = {𝑎, 𝑏} → ∃𝑎𝑋𝑏𝑋 (𝜒 ∧ ∀𝑥𝑋𝑦𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))))
4342expcom 416 . . . . . . 7 ((𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓𝑝 = 𝑞)) → (𝑋𝑉 → (∃𝑎𝑋𝑏𝑋 𝑝 = {𝑎, 𝑏} → ∃𝑎𝑋𝑏𝑋 (𝜒 ∧ ∀𝑥𝑋𝑦𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏})))))
4443com13 88 . . . . . 6 (∃𝑎𝑋𝑏𝑋 𝑝 = {𝑎, 𝑏} → (𝑋𝑉 → ((𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓𝑝 = 𝑞)) → ∃𝑎𝑋𝑏𝑋 (𝜒 ∧ ∀𝑥𝑋𝑦𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏})))))
456, 44syl 17 . . . . 5 (𝑝 ∈ (Pairs‘𝑋) → (𝑋𝑉 → ((𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓𝑝 = 𝑞)) → ∃𝑎𝑋𝑏𝑋 (𝜒 ∧ ∀𝑥𝑋𝑦𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏})))))
4645impcom 410 . . . 4 ((𝑋𝑉𝑝 ∈ (Pairs‘𝑋)) → ((𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓𝑝 = 𝑞)) → ∃𝑎𝑋𝑏𝑋 (𝜒 ∧ ∀𝑥𝑋𝑦𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))))
4746rexlimdva 3284 . . 3 (𝑋𝑉 → (∃𝑝 ∈ (Pairs‘𝑋)(𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓𝑝 = 𝑞)) → ∃𝑎𝑋𝑏𝑋 (𝜒 ∧ ∀𝑥𝑋𝑦𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))))
48 prelspr 43697 . . . . . . 7 ((𝑋𝑉 ∧ (𝑎𝑋𝑏𝑋)) → {𝑎, 𝑏} ∈ (Pairs‘𝑋))
4948adantr 483 . . . . . 6 (((𝑋𝑉 ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝜒 ∧ ∀𝑥𝑋𝑦𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))) → {𝑎, 𝑏} ∈ (Pairs‘𝑋))
50 simprl 769 . . . . . 6 (((𝑋𝑉 ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝜒 ∧ ∀𝑥𝑋𝑦𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))) → 𝜒)
51 nfsbc1v 3792 . . . . . . . . . . . . . . . . . 18 𝑥[𝑐 / 𝑥]𝜃
52 nfv 1915 . . . . . . . . . . . . . . . . . 18 𝑥{𝑐, 𝑦} = {𝑎, 𝑏}
5351, 52nfim 1897 . . . . . . . . . . . . . . . . 17 𝑥([𝑐 / 𝑥]𝜃 → {𝑐, 𝑦} = {𝑎, 𝑏})
54 nfsbc1v 3792 . . . . . . . . . . . . . . . . . 18 𝑦[𝑑 / 𝑦][𝑐 / 𝑥]𝜃
55 nfv 1915 . . . . . . . . . . . . . . . . . 18 𝑦{𝑐, 𝑑} = {𝑎, 𝑏}
5654, 55nfim 1897 . . . . . . . . . . . . . . . . 17 𝑦([𝑑 / 𝑦][𝑐 / 𝑥]𝜃 → {𝑐, 𝑑} = {𝑎, 𝑏})
57 sbceq1a 3783 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑐 → (𝜃[𝑐 / 𝑥]𝜃))
58 preq1 4669 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑐 → {𝑥, 𝑦} = {𝑐, 𝑦})
5958eqeq1d 2823 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑐 → ({𝑥, 𝑦} = {𝑎, 𝑏} ↔ {𝑐, 𝑦} = {𝑎, 𝑏}))
6057, 59imbi12d 347 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑐 → ((𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}) ↔ ([𝑐 / 𝑥]𝜃 → {𝑐, 𝑦} = {𝑎, 𝑏})))
61 sbceq1a 3783 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑑 → ([𝑐 / 𝑥]𝜃[𝑑 / 𝑦][𝑐 / 𝑥]𝜃))
62 preq2 4670 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑑 → {𝑐, 𝑦} = {𝑐, 𝑑})
6362eqeq1d 2823 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑑 → ({𝑐, 𝑦} = {𝑎, 𝑏} ↔ {𝑐, 𝑑} = {𝑎, 𝑏}))
6461, 63imbi12d 347 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑑 → (([𝑐 / 𝑥]𝜃 → {𝑐, 𝑦} = {𝑎, 𝑏}) ↔ ([𝑑 / 𝑦][𝑐 / 𝑥]𝜃 → {𝑐, 𝑑} = {𝑎, 𝑏})))
6553, 56, 60, 64rspc2 3631 . . . . . . . . . . . . . . . 16 ((𝑐𝑋𝑑𝑋) → (∀𝑥𝑋𝑦𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}) → ([𝑑 / 𝑦][𝑐 / 𝑥]𝜃 → {𝑐, 𝑑} = {𝑎, 𝑏})))
6665ad2antlr 725 . . . . . . . . . . . . . . 15 ((((𝑋𝑉 ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑐𝑋𝑑𝑋)) ∧ 𝜒) → (∀𝑥𝑋𝑦𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}) → ([𝑑 / 𝑦][𝑐 / 𝑥]𝜃 → {𝑐, 𝑑} = {𝑎, 𝑏})))
6722sbcpr 43732 . . . . . . . . . . . . . . . . . 18 ([{𝑐, 𝑑} / 𝑝]𝜓[𝑑 / 𝑦][𝑐 / 𝑥]𝜃)
68 pm2.27 42 . . . . . . . . . . . . . . . . . 18 ([𝑑 / 𝑦][𝑐 / 𝑥]𝜃 → (([𝑑 / 𝑦][𝑐 / 𝑥]𝜃 → {𝑐, 𝑑} = {𝑎, 𝑏}) → {𝑐, 𝑑} = {𝑎, 𝑏}))
6967, 68sylbi 219 . . . . . . . . . . . . . . . . 17 ([{𝑐, 𝑑} / 𝑝]𝜓 → (([𝑑 / 𝑦][𝑐 / 𝑥]𝜃 → {𝑐, 𝑑} = {𝑎, 𝑏}) → {𝑐, 𝑑} = {𝑎, 𝑏}))
70 eqcom 2828 . . . . . . . . . . . . . . . . 17 ({𝑎, 𝑏} = {𝑐, 𝑑} ↔ {𝑐, 𝑑} = {𝑎, 𝑏})
7169, 70syl6ibr 254 . . . . . . . . . . . . . . . 16 ([{𝑐, 𝑑} / 𝑝]𝜓 → (([𝑑 / 𝑦][𝑐 / 𝑥]𝜃 → {𝑐, 𝑑} = {𝑎, 𝑏}) → {𝑎, 𝑏} = {𝑐, 𝑑}))
7271com12 32 . . . . . . . . . . . . . . 15 (([𝑑 / 𝑦][𝑐 / 𝑥]𝜃 → {𝑐, 𝑑} = {𝑎, 𝑏}) → ([{𝑐, 𝑑} / 𝑝]𝜓 → {𝑎, 𝑏} = {𝑐, 𝑑}))
7366, 72syl6 35 . . . . . . . . . . . . . 14 ((((𝑋𝑉 ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑐𝑋𝑑𝑋)) ∧ 𝜒) → (∀𝑥𝑋𝑦𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}) → ([{𝑐, 𝑑} / 𝑝]𝜓 → {𝑎, 𝑏} = {𝑐, 𝑑})))
7473expimpd 456 . . . . . . . . . . . . 13 (((𝑋𝑉 ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑐𝑋𝑑𝑋)) → ((𝜒 ∧ ∀𝑥𝑋𝑦𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏})) → ([{𝑐, 𝑑} / 𝑝]𝜓 → {𝑎, 𝑏} = {𝑐, 𝑑})))
7574expcom 416 . . . . . . . . . . . 12 ((𝑐𝑋𝑑𝑋) → ((𝑋𝑉 ∧ (𝑎𝑋𝑏𝑋)) → ((𝜒 ∧ ∀𝑥𝑋𝑦𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏})) → ([{𝑐, 𝑑} / 𝑝]𝜓 → {𝑎, 𝑏} = {𝑐, 𝑑}))))
7675impd 413 . . . . . . . . . . 11 ((𝑐𝑋𝑑𝑋) → (((𝑋𝑉 ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝜒 ∧ ∀𝑥𝑋𝑦𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))) → ([{𝑐, 𝑑} / 𝑝]𝜓 → {𝑎, 𝑏} = {𝑐, 𝑑})))
7776impcom 410 . . . . . . . . . 10 ((((𝑋𝑉 ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝜒 ∧ ∀𝑥𝑋𝑦𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))) ∧ (𝑐𝑋𝑑𝑋)) → ([{𝑐, 𝑑} / 𝑝]𝜓 → {𝑎, 𝑏} = {𝑐, 𝑑}))
78 dfsbcq 3774 . . . . . . . . . . 11 (𝑞 = {𝑐, 𝑑} → ([𝑞 / 𝑝]𝜓[{𝑐, 𝑑} / 𝑝]𝜓))
79 eqeq2 2833 . . . . . . . . . . 11 (𝑞 = {𝑐, 𝑑} → ({𝑎, 𝑏} = 𝑞 ↔ {𝑎, 𝑏} = {𝑐, 𝑑}))
8078, 79imbi12d 347 . . . . . . . . . 10 (𝑞 = {𝑐, 𝑑} → (([𝑞 / 𝑝]𝜓 → {𝑎, 𝑏} = 𝑞) ↔ ([{𝑐, 𝑑} / 𝑝]𝜓 → {𝑎, 𝑏} = {𝑐, 𝑑})))
8177, 80syl5ibrcom 249 . . . . . . . . 9 ((((𝑋𝑉 ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝜒 ∧ ∀𝑥𝑋𝑦𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))) ∧ (𝑐𝑋𝑑𝑋)) → (𝑞 = {𝑐, 𝑑} → ([𝑞 / 𝑝]𝜓 → {𝑎, 𝑏} = 𝑞)))
8281rexlimdvva 3294 . . . . . . . 8 (((𝑋𝑉 ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝜒 ∧ ∀𝑥𝑋𝑦𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))) → (∃𝑐𝑋𝑑𝑋 𝑞 = {𝑐, 𝑑} → ([𝑞 / 𝑝]𝜓 → {𝑎, 𝑏} = 𝑞)))
83 sprel 43695 . . . . . . . 8 (𝑞 ∈ (Pairs‘𝑋) → ∃𝑐𝑋𝑑𝑋 𝑞 = {𝑐, 𝑑})
8482, 83impel 508 . . . . . . 7 ((((𝑋𝑉 ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝜒 ∧ ∀𝑥𝑋𝑦𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))) ∧ 𝑞 ∈ (Pairs‘𝑋)) → ([𝑞 / 𝑝]𝜓 → {𝑎, 𝑏} = 𝑞))
8584ralrimiva 3182 . . . . . 6 (((𝑋𝑉 ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝜒 ∧ ∀𝑥𝑋𝑦𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))) → ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → {𝑎, 𝑏} = 𝑞))
86 nfv 1915 . . . . . . . 8 𝑝𝜒
87 nfcv 2977 . . . . . . . . 9 𝑝(Pairs‘𝑋)
88 nfv 1915 . . . . . . . . . 10 𝑝{𝑎, 𝑏} = 𝑞
891, 88nfim 1897 . . . . . . . . 9 𝑝([𝑞 / 𝑝]𝜓 → {𝑎, 𝑏} = 𝑞)
9087, 89nfralw 3225 . . . . . . . 8 𝑝𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → {𝑎, 𝑏} = 𝑞)
9186, 90nfan 1900 . . . . . . 7 𝑝(𝜒 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → {𝑎, 𝑏} = 𝑞))
92 eqeq1 2825 . . . . . . . . . 10 (𝑝 = {𝑎, 𝑏} → (𝑝 = 𝑞 ↔ {𝑎, 𝑏} = 𝑞))
9392imbi2d 343 . . . . . . . . 9 (𝑝 = {𝑎, 𝑏} → (([𝑞 / 𝑝]𝜓𝑝 = 𝑞) ↔ ([𝑞 / 𝑝]𝜓 → {𝑎, 𝑏} = 𝑞)))
9493ralbidv 3197 . . . . . . . 8 (𝑝 = {𝑎, 𝑏} → (∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓𝑝 = 𝑞) ↔ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → {𝑎, 𝑏} = 𝑞)))
957, 94anbi12d 632 . . . . . . 7 (𝑝 = {𝑎, 𝑏} → ((𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓𝑝 = 𝑞)) ↔ (𝜒 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → {𝑎, 𝑏} = 𝑞))))
9691, 95rspce 3612 . . . . . 6 (({𝑎, 𝑏} ∈ (Pairs‘𝑋) ∧ (𝜒 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓 → {𝑎, 𝑏} = 𝑞))) → ∃𝑝 ∈ (Pairs‘𝑋)(𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓𝑝 = 𝑞)))
9749, 50, 85, 96syl12anc 834 . . . . 5 (((𝑋𝑉 ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝜒 ∧ ∀𝑥𝑋𝑦𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))) → ∃𝑝 ∈ (Pairs‘𝑋)(𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓𝑝 = 𝑞)))
9897ex 415 . . . 4 ((𝑋𝑉 ∧ (𝑎𝑋𝑏𝑋)) → ((𝜒 ∧ ∀𝑥𝑋𝑦𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏})) → ∃𝑝 ∈ (Pairs‘𝑋)(𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓𝑝 = 𝑞))))
9998rexlimdvva 3294 . . 3 (𝑋𝑉 → (∃𝑎𝑋𝑏𝑋 (𝜒 ∧ ∀𝑥𝑋𝑦𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏})) → ∃𝑝 ∈ (Pairs‘𝑋)(𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓𝑝 = 𝑞))))
10047, 99impbid 214 . 2 (𝑋𝑉 → (∃𝑝 ∈ (Pairs‘𝑋)(𝜓 ∧ ∀𝑞 ∈ (Pairs‘𝑋)([𝑞 / 𝑝]𝜓𝑝 = 𝑞)) ↔ ∃𝑎𝑋𝑏𝑋 (𝜒 ∧ ∀𝑥𝑋𝑦𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))))
1015, 100syl5bb 285 1 (𝑋𝑉 → (∃!𝑝 ∈ (Pairs‘𝑋)𝜓 ↔ ∃𝑎𝑋𝑏𝑋 (𝜒 ∧ ∀𝑥𝑋𝑦𝑋 (𝜃 → {𝑥, 𝑦} = {𝑎, 𝑏}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3138  wrex 3139  ∃!wreu 3140  [wsbc 3772  {cpr 4569  cfv 6355  Pairscspr 43688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-spr 43689
This theorem is referenced by:  reuprpr  43734  reuopreuprim  43737
  Copyright terms: Public domain W3C validator