MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riiner Structured version   Visualization version   GIF version

Theorem riiner 7780
Description: The relative intersection of a family of equivalence relations is an equivalence relation. (Contributed by Mario Carneiro, 27-Sep-2015.)
Assertion
Ref Expression
riiner (∀𝑥𝐴 𝑅 Er 𝐵 → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑅(𝑥)

Proof of Theorem riiner
StepHypRef Expression
1 xpider 7778 . . 3 (𝐵 × 𝐵) Er 𝐵
2 riin0 4567 . . . . 5 (𝐴 = ∅ → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) = (𝐵 × 𝐵))
32adantl 482 . . . 4 ((∀𝑥𝐴 𝑅 Er 𝐵𝐴 = ∅) → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) = (𝐵 × 𝐵))
4 ereq1 7709 . . . 4 (((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) = (𝐵 × 𝐵) → (((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵 ↔ (𝐵 × 𝐵) Er 𝐵))
53, 4syl 17 . . 3 ((∀𝑥𝐴 𝑅 Er 𝐵𝐴 = ∅) → (((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵 ↔ (𝐵 × 𝐵) Er 𝐵))
61, 5mpbiri 248 . 2 ((∀𝑥𝐴 𝑅 Er 𝐵𝐴 = ∅) → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵)
7 iiner 7779 . . . 4 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝑅 Er 𝐵) → 𝑥𝐴 𝑅 Er 𝐵)
87ancoms 469 . . 3 ((∀𝑥𝐴 𝑅 Er 𝐵𝐴 ≠ ∅) → 𝑥𝐴 𝑅 Er 𝐵)
9 erssxp 7725 . . . . . 6 (𝑅 Er 𝐵𝑅 ⊆ (𝐵 × 𝐵))
109ralimi 2948 . . . . 5 (∀𝑥𝐴 𝑅 Er 𝐵 → ∀𝑥𝐴 𝑅 ⊆ (𝐵 × 𝐵))
11 riinn0 4568 . . . . 5 ((∀𝑥𝐴 𝑅 ⊆ (𝐵 × 𝐵) ∧ 𝐴 ≠ ∅) → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) = 𝑥𝐴 𝑅)
1210, 11sylan 488 . . . 4 ((∀𝑥𝐴 𝑅 Er 𝐵𝐴 ≠ ∅) → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) = 𝑥𝐴 𝑅)
13 ereq1 7709 . . . 4 (((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) = 𝑥𝐴 𝑅 → (((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵 𝑥𝐴 𝑅 Er 𝐵))
1412, 13syl 17 . . 3 ((∀𝑥𝐴 𝑅 Er 𝐵𝐴 ≠ ∅) → (((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵 𝑥𝐴 𝑅 Er 𝐵))
158, 14mpbird 247 . 2 ((∀𝑥𝐴 𝑅 Er 𝐵𝐴 ≠ ∅) → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵)
166, 15pm2.61dane 2877 1 (∀𝑥𝐴 𝑅 Er 𝐵 → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wne 2790  wral 2908  cin 3559  wss 3560  c0 3897   ciin 4493   × cxp 5082   Er wer 7699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pr 4877
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-sn 4156  df-pr 4158  df-op 4162  df-iin 4495  df-br 4624  df-opab 4684  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-er 7702
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator