![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngcval | Structured version Visualization version GIF version |
Description: Value of the category of non-unital rings (in a universe). (Contributed by AV, 27-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
Ref | Expression |
---|---|
rngcval.c | ⊢ 𝐶 = (RngCat‘𝑈) |
rngcval.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
rngcval.b | ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) |
rngcval.h | ⊢ (𝜑 → 𝐻 = ( RngHomo ↾ (𝐵 × 𝐵))) |
Ref | Expression |
---|---|
rngcval | ⊢ (𝜑 → 𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngcval.c | . 2 ⊢ 𝐶 = (RngCat‘𝑈) | |
2 | df-rngc 42284 | . . . 4 ⊢ RngCat = (𝑢 ∈ V ↦ ((ExtStrCat‘𝑢) ↾cat ( RngHomo ↾ ((𝑢 ∩ Rng) × (𝑢 ∩ Rng))))) | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → RngCat = (𝑢 ∈ V ↦ ((ExtStrCat‘𝑢) ↾cat ( RngHomo ↾ ((𝑢 ∩ Rng) × (𝑢 ∩ Rng)))))) |
4 | fveq2 6229 | . . . . 5 ⊢ (𝑢 = 𝑈 → (ExtStrCat‘𝑢) = (ExtStrCat‘𝑈)) | |
5 | 4 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → (ExtStrCat‘𝑢) = (ExtStrCat‘𝑈)) |
6 | ineq1 3840 | . . . . . . . 8 ⊢ (𝑢 = 𝑈 → (𝑢 ∩ Rng) = (𝑈 ∩ Rng)) | |
7 | 6 | sqxpeqd 5175 | . . . . . . 7 ⊢ (𝑢 = 𝑈 → ((𝑢 ∩ Rng) × (𝑢 ∩ Rng)) = ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))) |
8 | rngcval.b | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) | |
9 | 8 | sqxpeqd 5175 | . . . . . . . 8 ⊢ (𝜑 → (𝐵 × 𝐵) = ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))) |
10 | 9 | eqcomd 2657 | . . . . . . 7 ⊢ (𝜑 → ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)) = (𝐵 × 𝐵)) |
11 | 7, 10 | sylan9eqr 2707 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → ((𝑢 ∩ Rng) × (𝑢 ∩ Rng)) = (𝐵 × 𝐵)) |
12 | 11 | reseq2d 5428 | . . . . 5 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → ( RngHomo ↾ ((𝑢 ∩ Rng) × (𝑢 ∩ Rng))) = ( RngHomo ↾ (𝐵 × 𝐵))) |
13 | rngcval.h | . . . . . . 7 ⊢ (𝜑 → 𝐻 = ( RngHomo ↾ (𝐵 × 𝐵))) | |
14 | 13 | eqcomd 2657 | . . . . . 6 ⊢ (𝜑 → ( RngHomo ↾ (𝐵 × 𝐵)) = 𝐻) |
15 | 14 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → ( RngHomo ↾ (𝐵 × 𝐵)) = 𝐻) |
16 | 12, 15 | eqtrd 2685 | . . . 4 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → ( RngHomo ↾ ((𝑢 ∩ Rng) × (𝑢 ∩ Rng))) = 𝐻) |
17 | 5, 16 | oveq12d 6708 | . . 3 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → ((ExtStrCat‘𝑢) ↾cat ( RngHomo ↾ ((𝑢 ∩ Rng) × (𝑢 ∩ Rng)))) = ((ExtStrCat‘𝑈) ↾cat 𝐻)) |
18 | rngcval.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
19 | elex 3243 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → 𝑈 ∈ V) | |
20 | 18, 19 | syl 17 | . . 3 ⊢ (𝜑 → 𝑈 ∈ V) |
21 | ovexd 6720 | . . 3 ⊢ (𝜑 → ((ExtStrCat‘𝑈) ↾cat 𝐻) ∈ V) | |
22 | 3, 17, 20, 21 | fvmptd 6327 | . 2 ⊢ (𝜑 → (RngCat‘𝑈) = ((ExtStrCat‘𝑈) ↾cat 𝐻)) |
23 | 1, 22 | syl5eq 2697 | 1 ⊢ (𝜑 → 𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ∩ cin 3606 ↦ cmpt 4762 × cxp 5141 ↾ cres 5145 ‘cfv 5926 (class class class)co 6690 ↾cat cresc 16515 ExtStrCatcestrc 16809 Rngcrng 42199 RngHomo crngh 42210 RngCatcrngc 42282 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-res 5155 df-iota 5889 df-fun 5928 df-fv 5934 df-ov 6693 df-rngc 42284 |
This theorem is referenced by: rngcbas 42290 rngchomfval 42291 rngccofval 42295 dfrngc2 42297 rngccat 42303 rngcid 42304 rngcifuestrc 42322 funcrngcsetc 42323 |
Copyright terms: Public domain | W3C validator |