![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rnghmresfn | Structured version Visualization version GIF version |
Description: The class of non-unital ring homomorphisms restricted to subsets of non-unital rings is a function. (Contributed by AV, 4-Mar-2020.) |
Ref | Expression |
---|---|
rnghmresfn.b | ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) |
rnghmresfn.h | ⊢ (𝜑 → 𝐻 = ( RngHomo ↾ (𝐵 × 𝐵))) |
Ref | Expression |
---|---|
rnghmresfn | ⊢ (𝜑 → 𝐻 Fn (𝐵 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnghmfn 42285 | . . 3 ⊢ RngHomo Fn (Rng × Rng) | |
2 | rnghmresfn.b | . . . . 5 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) | |
3 | inss2 3910 | . . . . 5 ⊢ (𝑈 ∩ Rng) ⊆ Rng | |
4 | 2, 3 | syl6eqss 3729 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ Rng) |
5 | xpss12 5201 | . . . 4 ⊢ ((𝐵 ⊆ Rng ∧ 𝐵 ⊆ Rng) → (𝐵 × 𝐵) ⊆ (Rng × Rng)) | |
6 | 4, 4, 5 | syl2anc 696 | . . 3 ⊢ (𝜑 → (𝐵 × 𝐵) ⊆ (Rng × Rng)) |
7 | fnssres 6085 | . . 3 ⊢ (( RngHomo Fn (Rng × Rng) ∧ (𝐵 × 𝐵) ⊆ (Rng × Rng)) → ( RngHomo ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵)) | |
8 | 1, 6, 7 | sylancr 698 | . 2 ⊢ (𝜑 → ( RngHomo ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵)) |
9 | rnghmresfn.h | . . 3 ⊢ (𝜑 → 𝐻 = ( RngHomo ↾ (𝐵 × 𝐵))) | |
10 | 9 | fneq1d 6062 | . 2 ⊢ (𝜑 → (𝐻 Fn (𝐵 × 𝐵) ↔ ( RngHomo ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵))) |
11 | 8, 10 | mpbird 247 | 1 ⊢ (𝜑 → 𝐻 Fn (𝐵 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1564 ∩ cin 3647 ⊆ wss 3648 × cxp 5184 ↾ cres 5188 Fn wfn 5964 Rngcrng 42269 RngHomo crngh 42280 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1818 ax-5 1920 ax-6 1986 ax-7 2022 ax-8 2073 ax-9 2080 ax-10 2100 ax-11 2115 ax-12 2128 ax-13 2323 ax-ext 2672 ax-sep 4857 ax-nul 4865 ax-pow 4916 ax-pr 4979 ax-un 7034 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1567 df-fal 1570 df-ex 1786 df-nf 1791 df-sb 1979 df-eu 2543 df-mo 2544 df-clab 2679 df-cleq 2685 df-clel 2688 df-nfc 2823 df-ne 2865 df-ral 2987 df-rex 2988 df-rab 2991 df-v 3274 df-sbc 3510 df-csb 3608 df-dif 3651 df-un 3653 df-in 3655 df-ss 3662 df-nul 3992 df-if 4163 df-sn 4254 df-pr 4256 df-op 4260 df-uni 4513 df-iun 4598 df-br 4729 df-opab 4789 df-mpt 4806 df-id 5096 df-xp 5192 df-rel 5193 df-cnv 5194 df-co 5195 df-dm 5196 df-rn 5197 df-res 5198 df-ima 5199 df-iota 5932 df-fun 5971 df-fn 5972 df-f 5973 df-fv 5977 df-ov 6736 df-oprab 6737 df-mpt2 6738 df-1st 7253 df-2nd 7254 df-rnghomo 42282 |
This theorem is referenced by: rngcbas 42360 rngchomfval 42361 rngchomfeqhom 42364 rngccofval 42365 dfrngc2 42367 rnghmsubcsetc 42372 rngcid 42374 funcrngcsetc 42393 |
Copyright terms: Public domain | W3C validator |