Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfrngc2 Structured version   Visualization version   GIF version

Theorem dfrngc2 41756
Description: Alternate definition of the category of non-unital rings (in a universe). (Contributed by AV, 16-Mar-2020.)
Hypotheses
Ref Expression
dfrngc2.c 𝐶 = (RngCat‘𝑈)
dfrngc2.u (𝜑𝑈𝑉)
dfrngc2.b (𝜑𝐵 = (𝑈 ∩ Rng))
dfrngc2.h (𝜑𝐻 = ( RngHomo ↾ (𝐵 × 𝐵)))
dfrngc2.o (𝜑· = (comp‘(ExtStrCat‘𝑈)))
Assertion
Ref Expression
dfrngc2 (𝜑𝐶 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})

Proof of Theorem dfrngc2
Dummy variables 𝑓 𝑔 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfrngc2.c . . 3 𝐶 = (RngCat‘𝑈)
2 dfrngc2.u . . 3 (𝜑𝑈𝑉)
3 dfrngc2.b . . 3 (𝜑𝐵 = (𝑈 ∩ Rng))
4 dfrngc2.h . . 3 (𝜑𝐻 = ( RngHomo ↾ (𝐵 × 𝐵)))
51, 2, 3, 4rngcval 41746 . 2 (𝜑𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻))
6 eqid 2610 . . . 4 ((ExtStrCat‘𝑈) ↾cat 𝐻) = ((ExtStrCat‘𝑈) ↾cat 𝐻)
7 fvex 6098 . . . . 5 (ExtStrCat‘𝑈) ∈ V
87a1i 11 . . . 4 (𝜑 → (ExtStrCat‘𝑈) ∈ V)
9 inex1g 4724 . . . . . 6 (𝑈𝑉 → (𝑈 ∩ Rng) ∈ V)
102, 9syl 17 . . . . 5 (𝜑 → (𝑈 ∩ Rng) ∈ V)
113, 10eqeltrd 2688 . . . 4 (𝜑𝐵 ∈ V)
123, 4rnghmresfn 41747 . . . 4 (𝜑𝐻 Fn (𝐵 × 𝐵))
136, 8, 11, 12rescval2 16260 . . 3 (𝜑 → ((ExtStrCat‘𝑈) ↾cat 𝐻) = (((ExtStrCat‘𝑈) ↾s 𝐵) sSet ⟨(Hom ‘ndx), 𝐻⟩))
14 eqid 2610 . . . . 5 (ExtStrCat‘𝑈) = (ExtStrCat‘𝑈)
15 eqidd 2611 . . . . 5 (𝜑 → (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))) = (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))))
16 dfrngc2.o . . . . . 6 (𝜑· = (comp‘(ExtStrCat‘𝑈)))
17 eqid 2610 . . . . . . 7 (comp‘(ExtStrCat‘𝑈)) = (comp‘(ExtStrCat‘𝑈))
1814, 2, 17estrccofval 16541 . . . . . 6 (𝜑 → (comp‘(ExtStrCat‘𝑈)) = (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑𝑚 (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑𝑚 (Base‘(1st𝑣))) ↦ (𝑔𝑓))))
1916, 18eqtrd 2644 . . . . 5 (𝜑· = (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑𝑚 (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑𝑚 (Base‘(1st𝑣))) ↦ (𝑔𝑓))))
2014, 2, 15, 19estrcval 16536 . . . 4 (𝜑 → (ExtStrCat‘𝑈) = {⟨(Base‘ndx), 𝑈⟩, ⟨(Hom ‘ndx), (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥)))⟩, ⟨(comp‘ndx), · ⟩})
212, 2jca 553 . . . . 5 (𝜑 → (𝑈𝑉𝑈𝑉))
22 eqid 2610 . . . . . 6 (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))) = (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥)))
2322mpt2exg 7112 . . . . 5 ((𝑈𝑉𝑈𝑉) → (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))) ∈ V)
2421, 23syl 17 . . . 4 (𝜑 → (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))) ∈ V)
25 fvex 6098 . . . . . 6 (comp‘(ExtStrCat‘𝑈)) ∈ V
2625a1i 11 . . . . 5 (𝜑 → (comp‘(ExtStrCat‘𝑈)) ∈ V)
2716, 26eqeltrd 2688 . . . 4 (𝜑· ∈ V)
28 rnghmfn 41672 . . . . . . 7 RngHomo Fn (Rng × Rng)
29 fnfun 5888 . . . . . . 7 ( RngHomo Fn (Rng × Rng) → Fun RngHomo )
3028, 29mp1i 13 . . . . . 6 (𝜑 → Fun RngHomo )
31 sqxpexg 6839 . . . . . . 7 (𝐵 ∈ V → (𝐵 × 𝐵) ∈ V)
3211, 31syl 17 . . . . . 6 (𝜑 → (𝐵 × 𝐵) ∈ V)
33 resfunexg 6362 . . . . . 6 ((Fun RngHomo ∧ (𝐵 × 𝐵) ∈ V) → ( RngHomo ↾ (𝐵 × 𝐵)) ∈ V)
3430, 32, 33syl2anc 691 . . . . 5 (𝜑 → ( RngHomo ↾ (𝐵 × 𝐵)) ∈ V)
354, 34eqeltrd 2688 . . . 4 (𝜑𝐻 ∈ V)
36 inss1 3795 . . . . . 6 (𝑈 ∩ Rng) ⊆ 𝑈
3736a1i 11 . . . . 5 (𝜑 → (𝑈 ∩ Rng) ⊆ 𝑈)
383sseq1d 3595 . . . . 5 (𝜑 → (𝐵𝑈 ↔ (𝑈 ∩ Rng) ⊆ 𝑈))
3937, 38mpbird 246 . . . 4 (𝜑𝐵𝑈)
4020, 2, 24, 27, 11, 35, 39estrres 16551 . . 3 (𝜑 → (((ExtStrCat‘𝑈) ↾s 𝐵) sSet ⟨(Hom ‘ndx), 𝐻⟩) = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
4113, 40eqtrd 2644 . 2 (𝜑 → ((ExtStrCat‘𝑈) ↾cat 𝐻) = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
425, 41eqtrd 2644 1 (𝜑𝐶 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  cin 3539  wss 3540  {ctp 4129  cop 4131   × cxp 5026  cres 5030  ccom 5032  Fun wfun 5784   Fn wfn 5785  cfv 5790  (class class class)co 6527  cmpt2 6529  1st c1st 7035  2nd c2nd 7036  𝑚 cmap 7722  ndxcnx 15641   sSet csts 15642  Basecbs 15644  s cress 15645  Hom chom 15728  compcco 15729  cat cresc 16240  ExtStrCatcestrc 16534  Rngcrng 41656   RngHomo crngh 41667  RngCatcrngc 41741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4694  ax-sep 4704  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4368  df-int 4406  df-iun 4452  df-br 4579  df-opab 4639  df-mpt 4640  df-tr 4676  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6936  df-1st 7037  df-2nd 7038  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-1o 7425  df-oadd 7429  df-er 7607  df-en 7820  df-dom 7821  df-sdom 7822  df-fin 7823  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-nn 10871  df-2 10929  df-3 10930  df-4 10931  df-5 10932  df-6 10933  df-7 10934  df-8 10935  df-9 10936  df-n0 11143  df-z 11214  df-dec 11329  df-uz 11523  df-fz 12156  df-struct 15646  df-ndx 15647  df-slot 15648  df-base 15649  df-sets 15650  df-ress 15651  df-hom 15742  df-cco 15743  df-resc 16243  df-estrc 16535  df-rnghomo 41669  df-rngc 41743
This theorem is referenced by:  rngcresringcat  41814
  Copyright terms: Public domain W3C validator