Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngogrphom Structured version   Visualization version   GIF version

Theorem rngogrphom 35264
Description: A ring homomorphism is a group homomorphism. (Contributed by Jeff Madsen, 2-Jan-2011.)
Hypotheses
Ref Expression
rnggrphom.1 𝐺 = (1st𝑅)
rnggrphom.2 𝐽 = (1st𝑆)
Assertion
Ref Expression
rngogrphom ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → 𝐹 ∈ (𝐺 GrpOpHom 𝐽))

Proof of Theorem rngogrphom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnggrphom.1 . . 3 𝐺 = (1st𝑅)
2 eqid 2821 . . 3 ran 𝐺 = ran 𝐺
3 rnggrphom.2 . . 3 𝐽 = (1st𝑆)
4 eqid 2821 . . 3 ran 𝐽 = ran 𝐽
51, 2, 3, 4rngohomf 35259 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → 𝐹:ran 𝐺⟶ran 𝐽)
61, 2, 3rngohomadd 35262 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺)) → (𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)))
76eqcomd 2827 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺)) → ((𝐹𝑥)𝐽(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))
87ralrimivva 3191 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐽(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))
91rngogrpo 35203 . . . 4 (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp)
103rngogrpo 35203 . . . 4 (𝑆 ∈ RingOps → 𝐽 ∈ GrpOp)
112, 4elghomOLD 35180 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐽 ∈ GrpOp) → (𝐹 ∈ (𝐺 GrpOpHom 𝐽) ↔ (𝐹:ran 𝐺⟶ran 𝐽 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐽(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))))
129, 10, 11syl2an 597 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝐺 GrpOpHom 𝐽) ↔ (𝐹:ran 𝐺⟶ran 𝐽 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐽(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))))
13123adant3 1128 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (𝐹 ∈ (𝐺 GrpOpHom 𝐽) ↔ (𝐹:ran 𝐺⟶ran 𝐽 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐽(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))))
145, 8, 13mpbir2and 711 1 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → 𝐹 ∈ (𝐺 GrpOpHom 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3138  ran crn 5556  wf 6351  cfv 6355  (class class class)co 7156  1st c1st 7687  GrpOpcgr 28266   GrpOpHom cghomOLD 35176  RingOpscrngo 35187   RngHom crnghom 35253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-map 8408  df-ablo 28322  df-ghomOLD 35177  df-rngo 35188  df-rngohom 35256
This theorem is referenced by:  rngohom0  35265  rngohomsub  35266  rngokerinj  35268
  Copyright terms: Public domain W3C validator